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ABSTRACT 

Medication identification and usage errors are a serious issue in Vietnam, 
particularly at primary healthcare levels and in self-medication behaviors, 
leading to health risks and increased treatment costs. This study proposes an 
automated drug recognition system that uses the deep learning model 
YOLO11s to detect pills in images and combines Swin Transformer with KNN 
for drug classification. The system also integrates open APIs such as openFDA, 
Gemini, and Pharmacity to provide comprehensive drug information, 
including name, composition, dosage, and safety warnings. Experiments on 
the VAIPEPill 2022 dataset, which includes over 30,000 pill images, 
demonstrate high accuracy in both detection (mAP 85 - 90%) and 
classification (89% across 108 drug classes). Compared to traditional 
CNN+KNN methods, the proposed system operates faster and is suitable for 
practical applications in pharmacies, hospitals, and households. 
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1. INTRODUCTION 

Medication errors are a serious issue in Vietnam, 
particularly prevalent at grassroots healthcare levels and 
in self-medication practices, negatively impacting public 
health and increasing treatment costs. According to the 
2015 SAMHSA report in the U.S., of 91.8 million people 
using prescription pain relievers, approximately 11.5 
million, or 7.4%, misused them. According to the World 
Health Organization [1], medication errors cause millions 
of injuries globally each year. An international study from 

the University of Bristol indicates that one-third of 
patients prescribed opioids show signs of dependence, 
and one-eighth are at high risk of misuse during long-
term treatment. In Vietnam, according to a study by Trần 
Thị Thu Vân and colleagues [3], the medication error rate 
in inpatient treatment at Hoàn Mỹ Minh Hải Hospital in 
2021 was 4.07%. Nurses were the primary source of errors 
(72.2%), followed by pharmacists (16 - 17%) and doctors 
(11%). Some studies indicate that medication errors 
related to nursing range from 37.7% to 68.6% of 
doses/administrations [4, 5]. A 2021 study at a hospital in 
Cần Thơ reported a medication error rate of 4.07%, with 
nurses accounting for 72.22%, pharmacists 16.67%, and 
doctors 11.11%. Research by Đỗ Thị Hà and colleagues [6] 
found that medication errors often stem from 
inexperienced healthcare workers, with 18.8% of final-
year students making errors in clinical practice. 
Additionally, confusion between common drugs like 
Paracetamol and Ibuprofen is particularly dangerous for 
the elderly and rural residents with limited access to 
healthcare services. Currently in Vietnam, drug 
identification methods primarily rely on manual 
observation and information lookup, which are time-
consuming and prone to errors, necessitating more 
effective technology-based solutions. 

Artificial intelligence, particularly computer vision and 
deep learning, offers significant potential in automating 
drug identification processes. Among these, the YOLO 
model enables fast object detection, suitable for real-time 
applications, while Swin Transformer provides robust 
feature extraction, facilitating accurate differentiation of 
drugs with similar shapes and colors. Additionally, 
integrating open APIs such as openFDA, Pharmacity, and 
Gemini allows the system to retrieve detailed information 
about drug composition, dosage, and usage. 
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This study proposes an automated drug identification 
and analysis system consisting of three main 
components: (1) the YOLOv11s model for pill detection, 
(2) a combination of Swin Transformer and KNN for 
classification, and (3) APIs for retrieving drug information. 
The system is designed to process images captured by 
smartphones, trained on the VAIPEPill 2022 dataset with 
over 30,000 drug images, targeting applications in 
pharmacies, hospitals, and households. 

The objectives of the study include: developing an 
accurate drug identification system under real-world 
conditions; providing easily understandable information 
for non-expert users; comparing its effectiveness with 
traditional methods such as CNN combined with KNN; 
and evaluating limitations while proposing 
improvements suitable for domestically produced 
Vietnamese drugs. The novelty of this study lies not in 
proposing a completely new algorithm but in 
demonstrating a lightweight yet highly effective end-to-
end pipeline for drug recognition. By combining 
YOLO11s for pill detection with Swin-B feature extraction 
and KNN classification, the system achieves higher 
accuracy than the traditional CNN+KNN baseline while 
maintaining low computational costs. Another unique 
contribution is the practical system design: integration of 
heterogeneous APIs (openFDA, Pharmacity, Gemini) 
under a microservices architecture with JSON caching for 
offline access. This design particularly addresses the 
infrastructural constraints in Vietnam, making the 
approach not only technically feasible but also socially 
relevant for reducing medication errors at pharmacies, 
hospitals, and households. 

The paper is organized as follows: Section 2 describes 
the proposed system, Section 3 presents the 
implementation methodology, Section 4 discusses the 
experimental results, and Section 5 provides conclusions 
and future development directions. 

2. DRUG IDENTIFICATION SYSTEM MODEL 

The drug identification and analysis system is 
designed to automatically process images of pills, such as 
those captured by smartphones, to identify the drug type 
and provide detailed information including name, active 
ingredients, dosage, and safety warnings. The system 
comprises three main components: (1) detecting the pill's 
location in the image using the YOLO11s model, (2) 
classifying the drug type using Swin Transformer 
combined with the K-Nearest Neighbors (KNN) algorithm, 
and (3) retrieving drug information through open APIs 

such as openFDA, Gemini, and Pharmacity. Each 
component is optimized to perform effectively under 
real-world conditions in Vietnam, such as images taken in 
pharmacies or households with low lighting or complex 
backgrounds. 

 
Figure 1. Diagram of the drug identification and analysis system 

2.1. Pill Detection Using YOLO11s 

The pill detection component utilizes the YOLO11s 
model, a lightweight version of the YOLO (You Only Look 
Once) model series, renowned for its fast and accurate 
object detection in a single neural network pass. 
YOLO11s was chosen for its ability to balance speed and 
accuracy, making it suitable for real-time applications 
such as drug identification in pharmacies or hospitals in 
Vietnam, where rapid processing on resource-
constrained devices is required. 

The operating mechanism of YOLO11s involves 
dividing the input image into a grid of cells, for example, 
7x7 or 9x9 cells, depending on the image resolution. Each 
cell is responsible for predicting bounding boxes if the 
center of an object, in this case, a pill, lies within that cell. 
Each bounding box is described by five parameters: (x, y) 
as the center coordinates, (w, h) as the width and height, 
and a probability score for the presence of an object 
(Pr(Object)). In this system, YOLO11s is defined with a 
single class, “pill,” to locate any pill in the image without 
classifying the specific drug type. The task of classifying 
the drug type (e.g., Paracetamol, Amoxicillin, or Decolgen 
Forte) is handled by the Swin Transformer and KNN 
components, described in the next section. The formula 
for calculating the object probability is: 

Pr(Object) ×  IOU{����,�����}        (1) 
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In which IOU (Intersection over Union) is the ratio 
between the intersection area and the union area of the 
predicted and actual bounding boxes. The higher the IOU 
value, the more accurate the prediction. 

The output of YOLO11s is a three-dimensional matrix 
of size S × S × (5 × N + M), where S is the grid size, N is the 
number of bounding boxes per cell (typically 2), and M is 
the number of classes (here, M=1, corresponding to the 
“pill” class). For example, with a 7x7 grid, the output 
matrix has a size of 7 × 7 × (5 × 2 + 1) = 7 × 7 × 11. 
Specifically, each cell predicts: 

- A probability Pr(Object) indicating the likelihood of 
a pill’s presence. 

- Coordinates and dimensions (x, y, w, h) for two 
bounding boxes. 

- The probability of belonging to the “pill” class, e.g., 
0.95 for any pill. 

To standardize input images, all images are resized to 
640x640 pixels, ensuring compatibility with YOLO11s 
requirements. During processing, YOLO11s employs the 
CSPDarknet architecture as the backbone for feature 
extraction, PAN-FPN (Path Aggregation Network - 
Feature Pyramid Network) as the neck for multi-scale 
feature aggregation, and a head to generate final 
predictions.  

Figure 2. Pill detection process using YOLO11s 

The main limitation of YOLO11s is that when multiple 
pills have their centers in the same grid cell, the model 
only detects one pill, missing the others. For example, in 

an image with multiple Paracetamol and Amoxicillin pills 
placed close together, YOLO11s may overlook some pills. 
To address this, the system employs image preprocessing 
techniques to reduce noise and enhance contrast, while 
also merging nearby bounding boxes using the Non-
Maximum Suppression (NMS) algorithm. 

2.2. Drug Classification Using Swin Transformer and 
KNN 

After YOLO11s identifies and crops the region 
containing the pill from the image with the “pill” class 
label, the classification component determines the 
specific drug type, such as Paracetamol, Decolgen Forte, 
or Ibuprofen. This component employs the Swin 
Transformer (Swin-B) model to extract image features, 
combined with the K-Nearest Neighbors (KNN) algorithm 
to classify drugs into 108 classes (107 prescription drugs) 
based on the VAIPEPill 2022 dataset. 

2.2.1. Feature Extraction Using Swin Transformer 

Swin Transformer (Swin-B) is a variant of Vision 
Transformer, designed to efficiently handle computer 
vision tasks, particularly with high-resolution images 
such as pill images. Unlike traditional Vision Transformers, 
which require significant computational resources, Swin 
Transformer employs a window-based attention 
mechanism to reduce computational costs while 

maintaining robust feature 
representation. This mechanism 
divides the input image into small 
windows (e.g., 7x7 pixels), 
computes attention only within 
each window, and then shifts the 
windows to ensure global 
connectivity between image 
regions. This approach preserves 
spatial structure and hierarchical 
features, such as the round shape 
of Paracetamol, the white color of 
Ibuprofen, or the “D” marking on 
Decolgen Forte. 

In this study, Swin-B was fine-
tuned on the VAIPEPill 2022 
dataset to learn features specific 
to Vietnamese drugs. The fine-

tuning process used a learning rate of 1e-4, the AdamW 
optimizer, and a CosineAnnealingLR learning rate 
scheduler. After fine-tuning, the output layer of Swin-B 
was replaced with an Identity layer, transforming the 
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model into a feature extractor that produces a 1024-
dimensional vector for each pill image. This vector 
encapsulates information about color, shape, and 
markings, such as the white color and round shape of 
Paracetamol or the “D” marking on Decolgen Forte. The 
feature vectors are saved in .npy format for reuse in the 
classification step. 

The reasons for choosing Swin Transformer include:   

- Superior performance in handling multi-scale 
features, suitable for pills with varying sizes and markings.   

- Efficient operation on mid-range hardware, such as 
the Tesla T4 GPU on Kaggle, meeting research conditions 
in Vietnam.   

- Flexibility in fine-tuning on the VAIPEPill 2022 
dataset, ensuring high accuracy for the drug classification 
task. 

2.2.2. Classification Using KNN 

The K-Nearest Neighbors (KNN) algorithm is used to 
classify drugs based on feature vectors from Swin-B. KNN 
is a non-parametric machine learning method that 
operates by finding the K nearest data points (neighbors) 
in the training set to the point being classified, then 
assigning a label based on the majority label. In this study, 
KNN uses Cosine distance to measure the similarity 
between feature vectors, calculated by the formula: 

cosine distance =  1 −
∑ (��⋅ ��)

�
���

�∑ ��
��

��� ⋅ �∑ ��
��

���

      (2) 

In which \( x_i \) and \( y_i \) are the feature values of 
the two vectors. Cosine distance is suitable for comparing 
image features as it focuses on the direction of the 
vectors rather than their magnitude. 

For example, with K = 5, KNN identifies the 5 closest 
drug samples in the feature space based on Cosine 
distance. If 3 samples belong to the Paracetamol class and 
2 to the Amoxicillin class, the pill is predicted as 
Paracetamol. The features and labels from the training set 
(over 30,000 images) are stored in .npy format, allowing 
KNN to process quickly without re-extracting features. 
KNN was chosen because:   

- It is simple, requiring no complex training, suitable 
for limited resources.   

- It is effective when using high-quality features from 
Swin-B, achieving 89% accuracy.   

- It easily accommodates new data, such as adding 
local drugs like Hapacol, without requiring retraining. 

 

 
Figure 3. Drug classification process using Swin Transformer and KNN 

2.3. Information Retrieval Using APIs 

The information retrieval component utilizes three 
open APIs - openFDA, Gemini, and Pharmacity - to 
provide detailed drug information after identification and 
classification. The system is designed with a 
microservices architecture, with independent services 
handling each data source, ensuring scalability and 
efficient operation under real-world conditions in 
Vietnam. 

2.3.1. openFDA 

openFDA, provided by the U.S. Food and Drug 
Administration (FDA), contains standardized drug 
information, including active ingredient names, 
manufacturers, uses, dosages, and side effects. For 
example, when identifying an Ibuprofen pill, openFDA 
provides details on dosage (200 - 400mg every 4 - 6 hours) 
and warnings (risk of stomach pain). The 
openDrugService sends GET requests to the openFDA API 
using queries like “searchDrug” or 
“searchDrugByIngredients” to search for drugs by name 
or 成分. The returned data is standardized for integration 
with other system components. 

2.3.2. Pharmacity 

The Pharmacity API provides information on locally 
produced Vietnamese drugs, such as Decolgen Forte or 
Hapacol, including retail prices, ingredients, indications, 
and stock availability at Pharmacity pharmacies. For 
instance, for Decolgen Forte, the API returns ingredients 
(Paracetamol, Phenylephrine HCl, Chlorpheniramine), 
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indications (treatment of cold and flu), and price 
(approximately 50,000 VND/box). The pharmacityService 
uses methods like “searchProducts” and 
“getProductBySlug” to retrieve data. When the API lacks 
sufficient information, the productScraperService 
employs Puppeteer to scrape data from the 
Pharmacity.vn website, ensuring comprehensive 
information. 

2.3.3. Gemini 

The Gemini API, a natural language processing model, 
is used to generate user-friendly instructions based on 
data from openFDA and Pharmacity. For example, for a 
Paracetamol pill, Gemini generates a response: “Take 1 - 2 
tablets every 4 - 6 hours for pain relief or fever reduction, 
do not exceed 4g/day, avoid use if allergic to 
Paracetamol.” The geminiService supports both text 
queries (e.g., “What are the side effects of Decolgen 
Forte?”) and analysis of drug label images, making 
information accessible to non-expert users, such as 
elderly individuals in rural areas. 

2.3.4. Local Storage 

To support rapid retrieval or operation in areas 
without internet access, particularly in rural Vietnam, the 
system uses the drugDataService to store openFDA data 
locally in JSON files. This service collects and standardizes 
data based on keywords, such as “Paracetamol” or 
“Ibuprofen,” ensuring information is always available. 

Figure 4. Information retrieval and AI interaction flow from APIs 

2.4. System Integration 

The system integrates the detection, classification, 
and information retrieval components into a complete 
workflow. The input image is processed sequentially:   

- YOLO11s detects and crops the region containing 
the pill.   

- Swin-B extracts features, and KNN classifies the drug.   

- APIs retrieve detailed information based on the 
predicted label.   

The results are displayed visually with a bounding box 
around the pill, the class label (e.g., “Panadol”), and 
information from the APIs (ingredients, dosage). The 
system is designed to process within 1 - 2 seconds on an 
RTX 3050 GPU, suitable for applications in Pharmacity 
pharmacies or households in Vietnam. 

3. IMPLEMENTATION METHODOLOGY 

3.1. VAIPEPill 2022 Dataset 

The VAIPEPill 2022 dataset, developed by the VinUni-
Illinois Smart Health Center (VISHC) and Hanoi University 
of Science and Technology within the VAIPE project, 
serves as the core foundation for training and evaluating 
the system. This dataset comprises over 30,000 pill 
images collected from major hospitals in Vietnam, 
reflecting real-world conditions such as natural lighting, 
fluorescent lighting, or complex backgrounds (e.g., 
pharmacy countertops or wooden surfaces in 
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households). Common drugs like Paracetamol, 
Amoxicillin, Decolgen Forte, and Hapacol are 
represented, alongside less common drugs, ensuring 
diversity. 

3.1.1. Data Structure 

The dataset is organized as follows:   

- Pill images: Stored in JPEG format (VAIPE_P_{serial 
number}.jpg), including over 9,500 original images and 
more than 30,000 cropped images containing individual 
pills. The images are captured from various angles under 
different lighting conditions and backgrounds, e.g., a 
Paracetamol pill on a white table under lamp light or a 
Decolgen Forte pill on a natural wooden surface.   

- Class labels: Consist of 108 classes, with 107 
prescription drug classes (labels 0 to 106) and 1 over-the-
counter drug class (label 107). Each class represents a 
drug type, e.g., label 0 for Paracetamol, label 51 for 
Decolgen Forte.   

- Annotation files: In JSON format, containing 
information about the image name (image_name), class 
label (class_id), and bounding box coordinates (x_min, 
y_min, x_max, y_max) specifying the pill’s location in the 
image.   

- Prescription images: Include 172 prescription 
images in the training set, providing supplementary 
information to link with real-world data, though not 
directly used in this study. 

3.1.2. Data Splitting 

The dataset is divided into two main subsets:   

- Training set: Comprises 90% of the data (8,550 
original images and approximately 27,000 cropped 
images), used to train the YOLO11s and Swin Transformer 
models. This set ensures the models learn diverse 
features, such as the round shape of Paracetamol or the 
green color of Decolgen Forte.   

- Test set: Comprises 10% of the data (950 original 
images and 1,400 images in the public test set), used to 
evaluate performance under real-world conditions, such 
as images taken in pharmacies with low lighting. 

3.1.3. Data Preprocessing 

To ensure consistency and compatibility with the 
models, the data is preprocessed as follows:   

- Image standardization: All images are resized to 
640x640 pixels for YOLO11s and 224x224 pixels for Swin 
Transformer, eliminating resolution variations. For 

example, an image of a Hapacol pill on a wooden table is 
resized to fit the model’s input requirements.   

- Annotation conversion: JSON files are converted to 
text format (.txt) following the YOLO standard, with each 
line containing the class label and normalized bounding 
box coordinates (center coordinates, width, and height 
divided by image dimensions).   

- Data augmentation: Techniques such as image 
rotation, brightness adjustment, and noise addition are 
applied to increase diversity, enabling the model to 
better handle real-world scenarios, such as images taken 
in low lighting in rural areas. 

Table 1. Summary of characteristics of the VAIPEPill 2022 dataset 

Attribute Value 

Total images >30,000 (9,500 original, >27,000 cropped) 

Number of classes 107 

Training set 8,550 original images, ~27,000 cropped images 

Test set 1,400 public images 

Image resolution Standardized to 640x640 (YOLO), 224x224 (Swin) 

Capture conditions Natural light, fluorescent light, complex backgrounds 

3.2. Experimental Environment 
The entire process of training, testing, and deploying 

the system was conducted on Kaggle Notebooks, a free 
cloud-based platform providing powerful GPU resources, 
suitable for deep learning research in Vietnam. The 
hardware and software configurations include:   

- Hardware: Tesla T4 GPU (16GB VRAM), 2–4 vCPU, 
28GB RAM, 20GB storage capacity.   

- Software: Linux operating system, Python 3.8, key 
libraries such as PyTorch (for YOLO11s and Swin 
Transformer models), scikit-learn (for KNN 
implementation), NumPy (for feature storage), and 
OpenCV (for image processing).   

- Advantages of Kaggle: Free, pre-integrated with 
the VAIPEPill 2022 dataset, supports code and result 
sharing, ideal for research groups with limited budgets. 

This environment ensures the system can handle large 
datasets and complex deep learning models while 
allowing rapid experimentation with different training 
configurations. Experimental results are stored in the 
/kaggle/working/ directory, including trained models, 
.npy feature files, and evaluation reports. 

3.3. Model Training 
The system includes two main deep learning models 

(YOLO11s and Swin Transformer) and one machine 
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learning algorithm (KNN). The training process is 
designed to optimize performance on the VAIPEPill 2022 
dataset, with carefully selected parameters to balance 
accuracy and speed. 

3.3.1. YOLO11s Training 

The YOLO11s model is trained to detect the location 
of pills in images, with the following configuration:   

- Training parameters:   

 Epochs: 100, to ensure model convergence.   

 Batch size: 8, suitable for the Tesla T4 GPU capacity.   

 Learning rate: 0.01, with a decaying schedule to 
prevent overfitting.   

 Optimizer: Adam, to accelerate convergence.   

- Process:   

 Load the VAIPEPill 2022 dataset from Kaggle, unzip 
images and JSON annotation files.   

 Create a data.yaml configuration file, specifying 
paths to training, validation data, and 107 class labels.   

 Execute the training command (model.train) on 
Kaggle, utilizing the GPU for optimized speed.   

 Evaluate the model on the validation set using 
metrics such as mAP@0.5 (mean Average Precision at  
IOU = 0.5) and mAP@0.5:0.95.   

 Results: After 100 epochs, YOLO11s achieves 
mAP@0.5 of 85 - 90%, with a Precision of 86.69% and 
Recall of 78.66%. The model is saved in .pt format for 
reuse. 

3.3.2. Swin Transformer Training 

The Swin Transformer (Swin-B) is fine-tuned for image 
feature extraction, with the following configuration:   

- Training parameters:   

 Epochs: 50, as the model is pre-trained on ImageNet.   

 Learning rate: 1e-4, with a CosineAnnealingLR 
schedule for dynamic adjustment.   

 Optimizer: AdamW, suitable for Transformer models.   

 Batch size: 32, optimized for the Tesla T4 GPU.   

- Process:   

 Load the Swin-B model from PyTorch Hub with pre-
trained weights.   

 Replace the output layer with an Identity layer to 
create a feature extractor, outputting 1024-dimensional 
vectors.   

 Load the VAIPEPill 2022 dataset (224x224 cropped 
images), applying transformations such as resize, center 
crop, and normalization.   

 Train on the training set, saving features and labels 
in .npy format (knn_features_swin_b.npy, 
knn_labels_swin_b.npy).   

- Results: Swin-B effectively extracts features, 
capturing information about the color, shape, and 
markings of drugs, e.g., the white color and round shape 
of Paracetamol. 

3.3.3. KNN Implementation 

The KNN algorithm is implemented to classify drugs 
based on features from Swin-B, with the following 
configuration:   

- Parameters: K = 5, using Cosine distance to measure 
similarity.   

- Process:   

 Load features and labels from .npy files.   

 Initialize KNeighborsClassifier from scikit-learn, 
training on the entire set of training features.   

 Predict labels for new images by extracting features 
via Swin-B and comparing them to the training set.   

- Results: KNN achieves 89% accuracy across 107 
classes, with high confidence (0.95 - 1.0) for common 
drugs like Paracetamol and Decolgen Forte. 

3.4. API Integration 

The system integrates three open APIs (openFDA, 
Pharmacity, Gemini) using a microservices architecture to 
ensure flexibility and scalability. The integration process 
is implemented as follows 

3.4.1. openDrugService 

This service queries the openFDA API to retrieve 
information about international drugs, such as Ibuprofen 
or Amoxicillin. The main methods include:   

- searchDrug: Searches for drugs by brand or generic 
name, e.g., “Paracetamol.”   

- searchDrugByIngredients: Searches for drugs 
based on active ingredients, e.g., “Acetaminophen.”   

The process involves encoding the query, sending a 
GET request, and standardizing the returned data (JSON) 
for integration with the system. For example, when 
identifying an Ibuprofen pill, openFDA provides details 
on dosage (200 - 400mg) and side effects (stomach pain). 
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3.4.2. pharmacityService 

This service interacts with the Pharmacity API to 
retrieve information about locally produced drugs, such 
as Decolgen Forte or Hapacol. The main methods are:   

- searchProducts: Searches for products by keyword, 
e.g., “Decolgen.”   

- getProductBySlug: Retrieves product details and 
ingredients (e.g., Paracetamol, Chlorpheniramine).   

When the API lacks sufficient data, the 
productScraperService uses Puppeteer to scrape 
information from the Pharmacity.vn website, such as 
product descriptions or images. 

3.4.3. geminiService 
This service leverages the Gemini API to generate 

user-friendly instructions and answer user queries. For 
example:   

- Query: “What are the side effects of Decolgen Forte?”   
- Response: “It may cause drowsiness due to 

Chlorpheniramine; avoid use when driving.”   
Gemini also analyzes drug label images, extracting 

information like name or dosage, assisting users without 
medical expertise. 

4. EXPERIMENTAL RESULTS 

4.1. Pill Detection Performance (YOLO11s) 
The YOLO11s model was trained for 100 epochs on 

the training set of the VAIPEPill 2022 dataset (8,550 
original images, ~27,000 cropped images), with 
parameters: batch size of 8, learning rate of 0.01 
(decreased according to a schedule), and Adam 
optimizer. The "results (5).csv" file provides detailed 
training metrics, including bounding box loss (box_loss), 
classification loss (cls_loss), Precision, Recall, and 
mAP@0.5 (mean Average Precision at IOU = 0.5). 

4.1.1. YOLO11s Training Results 
The training process showed significant improvement 

across epochs:   
- Epoch 1: mAP@0.5 reached 23.33%, Precision 

40.85%, Recall 42.07%, with box_loss 2.05287 and 

cls_loss 2.37121, indicating the model was learning basic 
features.   

- Epoch 50: mAP@0.5 increased to 53.93%, Precision 
89.31%, Recall 43.65%, box_loss reduced to 1.54662, 
cls_loss reduced to 1.46125, showing better 
convergence.   

- Epoch 100: mAP@0.5 reached 85.09%, 
mAP@0.5:0.95 reached 55.92%, Precision 86.69%, Recall 
78.66%, box_loss 1.28433, cls_loss 1.02498. Validation 
metrics (val/box_loss 1.32785, val/cls_loss 0.86956) 
indicate slight overfitting but still high performance. 

 
Figure 5. The training curve of YOLO11s across 100 epochs. The x-axis 

represents the number of epochs, and the y-axis indicates mAP@0.5 (mean 
Average Precision). The curve shows a steady improvement and convergence 
around epoch 100 

4.1.2. Evaluation on the Test Set 

On the public test set (1,400 images), YOLO11s 
achieved mAP@0.5 ranging from 85–90%, depending on 
image conditions. Precision consistently outperformed 
Recall, indicating the model prioritizes accurate 
predictions over detecting all pills, which is suitable for 
pharmacy applications where accuracy is critical. For 
example, with the image VAIPE_P_578_7_0.jpg, YOLO11s 
generated a bounding box with a confidence score of 
0.7501, accurately matching the ground truth label. 

However, the model faced challenges in the following 
cases:   

Table 2. Summarizes the performance of YOLO11s at key epoch milestones 

Epoch mAP@0.5 mAP@0.5:0.95 Precision Recall train/box_loss train/cls_loss val/box_loss val/cls_loss 

1.0 23.33 14.29 40.85 42.07 2.05287 2.37121 2.0006 2.31684 

50.0 53.93 35.83 89.31 43.65 1.54662 1.46125 1.60932 1.469 

100.0 85.09 55.92 86.69 78.66 1.28433 1.02498 1.32785 0.86956 
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- Blurry images or low lighting: For instance, the 
image VAIPE_P_106_2.jpg resulted in NO_DETECTION 
due to poor lighting conditions, common in rural areas.   

- Overlapping pills: YOLO11s missed some pills 
when their centers fell within the same grid cell, as seen 
in images with multiple Paracetamol pills on a pharmacy 
counter. 

Total training time was approximately 11.75 hours on 
a Tesla T4 GPU, with per-image processing time of about 
1 - 2 seconds, feasible for real-world applications but 
requiring optimization for mobile devices. 

4.2. Drug Classification Performance (Swin 
Transformer + KNN) 

4.2.1. Classification Results 

KNN, with K = 5 and Cosine distance, achieved an 
Accuracy of 89% across 108 classes, based on 1024-
dimensional features from Swin-B. Additional metrics 
include:   

- F1-Score: 87.50%, balancing Precision and Recall, 
particularly important for imbalanced data (e.g., many 
Paracetamol samples, few rare drug samples).   

- Top-5 Accuracy: 95%, indicating the model often 
predicts correctly within the top 5 highest-probability 
classes, useful for drugs with similar features (e.g., 
Paracetamol and Ibuprofen). 

Table 3. Classification accuracy of Swin-B + KNN for common drug classes 
compared with CNN + KNN baseline. The table highlights the improvement 
achieved by the proposed approach, especially for visually similar drugs such 
as Paracetamol and Ibuprofen 

Drug 
Classification 

Number of 
test classes 

Accuracy 
Average 

reliability 
Outstanding 

errors 
Paracetamol (0) 100 100% 0.628 No 
Ibuprofen (1) 200 97.5% 0.792 Mistaken with 

class 60 
Drug 99 300 98.7% 0.957 Mistaken with 

class 89 

4.2.2. Comparison with Traditional Methods 

Compared to the CNN + KNN method, Swin-B + KNN 
outperforms due to the Swin Transformer's ability to 
extract multi-scale features. Traditional CNNs (e.g., 
ResNet) achieved an Accuracy of approximately 80% on 
the VAIPEPill 2022 dataset, whereas Swin-B + KNN 
reached 89%. This advantage is particularly evident for 
drugs with similar appearances, such as Paracetamol and 
Ibuprofen, as Swin-B effectively preserves spatial 
structure and detailed markings. It should be noted that 

the current evaluation only compared the proposed 
Swin-B + KNN configuration against a CNN + KNN 
baseline. Although the results clearly show the 
superiority of our approach, broader comparisons with 
other architectures such as ResNet, EfficientNet, or Vision 
Transformers would provide a more comprehensive 
benchmark. This will be considered in future work. 

4.3. Discussion 

The proposed system outperforms CNN + KNN in both 
accuracy (89% vs. 80%) and speed (1.5s vs. 3.2s), thanks to 
YOLO11s’s fast processing and Swin-B’s robust feature 
extraction. However, limitations include:   

- Imbalanced data: The Paracetamol class has more 
samples than rare drug classes, impacting the F1-Score.   

- Low lighting conditions: Performance decreases 
with blurry images, requiring more diverse data 
augmentation.   
- API dependency: openFDA lacks data on local 

drugs, and the Pharmacity API is inconsistent. 
- Another limitation concerns the detection of 

overlapping or crowded pills. YOLO11s often misses pills 
when multiple objects fall into the same grid cell, leading 
to under-detection in real-world cases such as pharmacy 
counters. Currently, only a basic Non-Maximum 
Suppression (NMS) is applied, without further post-
processing. Future directions may include adopting 
improved NMS variants, instance association techniques, 
or even shifting towards instance segmentation models 
(e.g., Mask R-CNN, YOLOv11-seg) that are more suitable 
for crowded-object scenarios. 
5. CONCLUSION AND FUTURE DIRECTIONS 
5.1. Conclusion 

The study developed an automated drug 
identification and analysis system integrating YOLO11s, 
Swin Transformer combined with KNN, and open APIs 
(openFDA, Pharmacity, Gemini) to reduce medication 
errors in Vietnam. Key achievements include:   
- Pill detection: YOLO11s achieved mAP@0.5 of 

85.09%, Precision of 86.69%, and Recall of 78.66% on the 
VAIPEPill 2022 dataset, e.g., detecting Paracetamol 
(VAIPE_P_578_7_0.jpg, confidence 0.7501).   
- Drug classification: Swin-B + KNN reached 89% 

accuracy, F1-Score of 87.50% across 108 classes, 
performing well for Paracetamol (100%) and Amoxicillin 
(97.5%), despite confusion with class 60 
(VAIPE_P_382_5_2.jpg).   
- API integration: Provides detailed information from 

openFDA (Ibuprofen), Pharmacity (Decolgen Forte), and 
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Gemini (user-friendly instructions), processing images in 
1–2 seconds on a Tesla T4 GPU.   

- Advantages: Outperforms CNN + KNN (80%, 3.2s) 
with 89% accuracy and 1.5s processing time.   

- Applications: Supports Pharmacity pharmacies and 
households, e.g., quickly identifying Hapacol, reducing 
errors.   

The system contributes to enhancing medication 
safety and supporting Vietnam’s digital healthcare 
transformation. 

5.2. Limitations 

The system has the following limitations:   

- Imbalanced data: The Paracetamol class has more 
samples than class 99, causing errors (e.g., 
VAIPE_P_1021_1_0.jpg misclassified as class 89, 
confidence 0.6222), lowering F1-Score (87.50%) for rare 
drugs like Boganic.   

- YOLO11s: Misses pills when centers fall in the same 
grid cell (e.g., VAIPE_P_106_2.jpg, NO_DETECTION).   

- Limited data diversity: Lacks low-light images and 
local drugs (Hapacol), e.g., VAIPE_P_100_0.jpg only 
achieved confidence 0.2629.   

- Drug confusion: Amoxicillin misclassified as class 60 
(VAIPE_P_382_5_2.jpg, confidence 0.4923).   

- APIs: openFDA lacks local drug data, Pharmacity API 
is inconsistent, and Gemini may be inaccurate.   

- Performance: Consumes 5GB RAM, 1–2 seconds 
processing time, not yet optimized for mobile devices. 

- Another critical limitation is the dependence on 
external APIs. While openFDA provides standardized 
international data, it lacks comprehensive coverage of 
domestically produced Vietnamese drugs. Pharmacity 
APIs are not always stable, and Gemini may occasionally 
return inaccurate or inconsistent results. Such 
dependencies can affect system robustness and the 
overall reliability of information retrieval in real-world 
deployments. 

5.3. Future Directions 
- Data balancing: Augment data for rare classes 

(Boganic) and apply class-balanced loss.   

- Improve YOLO11s: Fine-tune for multi-pill detection, 
explore YOLO12.   

- Expand data: Collect low-light images and local 
drugs (Hapacol).   

- Reduce confusion: Use newer ViT models or SVM to 
distinguish features of Paracetamol-Ibuprofen.   

- Optimize APIs: Build a local database for offline 
support.   

- To reduce dependency on third-party APIs, we plan 
to construct a hybrid local knowledge base that 
aggregates essential drug information from openFDA, 
Pharmacity, and verified domestic sources. This local 
repository would serve as a fallback when APIs are 
unavailable, thereby improving the reliability, availability, 
and autonomy of the system in resource-constrained or 
unstable network environments. 

- Optimize performance: Implement YOLO11n and 
edge computing for mobile devices.   

- Testing: Deploy at Pharmacity and district hospitals.   

- Interface: Add Vietnamese, ethnic minority 
languages, and dosage query features.   

- Ethics: Require pharmacist verification and comply 
with medical regulations.   

- Expansion: Handle traditional medicines and 
analyze drug interactions. 

5.4. Significance and Prospects 

The system reduces medication errors with 89% 
accuracy and 1.5-second processing time, supporting 
Pharmacity pharmacies and rural areas (e.g., identifying 
Hapacol and providing dosage). Optimizing for mobile 
devices and expanding local drug data will enhance 
applicability, contributing to Vietnam’s smart healthcare, 
particularly for the elderly and rural communities. 
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