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ABSTRACT

Recently, the problem of transportation routing with integrated drones
in loT-based logistics has emerged as a prominent research area within the
academic community. It is particularly important for loT applications in the
transportation and logistics sectors, especially in last-mile delivery. Drones
take off from predefined stop points to serve customers and then land at hubs
to connect with other vehicles for continued delivery, all while adhering to
constraints such as flight range and payload capacity. Integrating drone and
vehicle routing poses unique challenges due to the need to synchronize both
drone and vehicle schedules to optimize overall delivery time or system costs.
In this paper, we introduce the Traveling Salesman Problem with Drone
(TSPD) to optimize delivery costs. We then develop two efficient algorithms
to address the TSPD. Our Q-learning and Sarsa algorithms enable a drone,
transported by a vehicle, to deliver multiple parcels to customers at different
locations, with the goal of minimizing delivery costs and maximizing
customer satisfaction upon parcel delivery. Through experiments on
artificially generated realistic scenarios, the results demonstrate that the
proposed algorithms achieve promising computational performance.
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1. INTRODUCTION

The Truck and Drone Routing Problem (TSPD) is an
extended variant of the classic Traveling Salesman
Problem (TSP), which requires synchronization of both
ground vehicle and drone routes to achieve optimal
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delivery cost and time [1]. TSPD has broad applications in
logistics, last-mile delivery, robot scheduling, and supply
chain planning due to its ability to reduce transportation
costs, save fuel, and enhance customer experience.

Theoretically, the TSPD belongs to the class of NP-
hard problems and becomes increasingly complex when
additional constraints such as drone flight range, payload
capacity, and time windows are introduced [2]. Scaling up
the problem significantly enlarges the search space,
which limits the practicality of exact methods like branch-
and-bound or dynamic programming due to resource
constraints. Meanwhile, heuristic and metaheuristic
algorithms (e.g., genetic algorithms, ant colony
optimization) must strike a balance between
computational speed and solution quality [3].

The Reinforcement Learning (RL) model offers a novel
approach to the TSPD by enabling an agent to
autonomously explore and learn optimal policies
through interaction with the environment [4]. Instead of
exhaustively searching the entire solution space, RL
adjusts its strategy based on experience, allowing it to
quickly generate near-optimal solutions with lower
computational cost. This is especially suitable for real-
time scenarios and large-scale or previously unseen data.
Applying RL to the TSPD not only provides an effective
way to solve the drone-assisted delivery problem but also
opens the door for transferring the technology to other
complex optimization problems.

2. RELATED WORKS

In recent years, the integration of unmanned aerial
vehicles (UAVs), particularly drones, into logistics and
delivery systems has garnered increasing attention.
Numerous studies have concentrated on optimizing
drone and truck-drone collaborative operations. Chung
et al. [1] presented a comprehensive review of the state-
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of-the-art in combined drone and truck operations,
identifying key challenges and outlining future research
directions related to routing, scheduling, and system
integration. Expanding on this work, Kong and Jiang [2]
investigated the truck-drone collaborative routing
problem and proposed a delivery optimization method
that accounts for vehicle obstacle avoidance - an
essential consideration in urban logistics environments.
Likewise, Wang et al. [3] examined collaborative route
planning for rural logistics, highlighting the benefits of
drone-truck coordination in sparsely populated areas.

Focusing on last-mile delivery, Arishi et al. [4]
employed machine learning techniques to improve the
efficiency of truck-drone systems, particularly within the
context of Industry 4.0. Collectively, these studies
underscore the growing significance of intelligent
algorithms in  enhancing drone-assisted logistics
operations.

Simultaneously, reinforcement learning (RL) has
emerged as a robust framework for solving sequential
decision-making and combinatorial optimization
problems. The seminal work by Sutton and Barto [5],
along with the theoretical advancements in Q-learning
by Clifton and Laber [6], has laid a strong foundation for
applying RL techniques to routing and delivery
optimization. Notably, Bogyrbayeva et al. [7]
implemented a deep reinforcement learning approach to
tackle the Traveling Salesman Problem with Drone
(TSP-D), demonstrating that RL-based methods can
effectively generate near-optimal solutions for this NP-
hard problem. Their research serves as a critical step
toward the development of more scalable and efficient
learning-based algorithms for drone-assisted routing.

These contributions collectively emphasize the
promising potential of integrating reinforcement
learning with drone logistics to address the TSP-D,
thereby motivating continued research into more
adaptive, robust, and efficient RL-based solutions.

3. PROBLEM STATEMENT
3.1. Preliminaries

Point

- Definition: A node represents either a customer or a
depot, depicted as a point on a 2D plane with coordinates
(x,y).

- The distance between two points is calculated using
the Euclidean distance:

d(A,B) = y/(xa —xp)2 + (ya — yB)?
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- Customer’s attributes:
+Demand - weight of goods to be delivered.
+ Time satisfaction - time priority coefficient.

- Depot’s attributes: located at the origin (0,0);
demand = 0 and time satisfaction = 0.

Calculation of Greenhouse Gas Emissions
TotalGHG = YISt dyy * x;; « ET +

Lot XLy dyj * vy * ED M
where:
+ET: Greenhouse gas emission factor of the truck.
+ED: Greenhouse gas emission factor of the drone.
+dj;: Distance between customersiand j.

+xi: Binary variable equals 1 if there is a truck route
from customer i to j, and 0 otherwise.

+yi: Binary variable equals 1 if there is a drone route
from customer i to j, and 0 otherwise.

Increasing the proportion of deliveries made by
drones significantly reduces this value due to their low
emission factor.

Calculation of customer satisfaction

Delivery time window for the k" customer:

dk-1k

DeliveryTime, = ————
k velocityyenicle

+ waiting_time, _,  (2)

Customer satisfaction of the k™ customer upon
delivery:

TimeSatisfactiony

3)

CustomerSatisfaction, = ——
DeliveryTime,

Total Satisfaction:
TotalSatisfaction= ¥\ ; CustomerSatisfactiony,  (4)

Faster delivery leads to higher customer satisfaction,
reflecting a better customer experience.

3.2. Problem description

The TSPD problem can be defined as follows: Given a
set of customer locations C = {¢;,C,,...,¢n} and a distance
matrix D, where d; denotes the distance between
customer ¢ and ¢. Each customer ¢ has a specified
delivery time t; indicating the latest time the delivery
should occur, along with a parcel weight requirement. A
coordinated fleet of trucks and drones is used to fulfill
these deliveries. After completing each delivery, the
drone must return to the truck to recharge and collect the
next package. Both the truck and the drone release
greenhouse gases during their operations. The goal is to
determine a delivery route that ensures all parcels are
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delivered through the combined efforts of the truck and
drone. The problem can be formally stated as:

- Input:
+ A dataset containing a list of points.

+Indices of transportation vehicles including trucks
and drones.

- Output:
+The routes of trucks and drones.

+The total greenhouse gas emissions and the overall
customer satisfaction achieved.

- Objective:

+Minimization of emissions generated:
N+1N+1

min TotalGHG = Z Z djj * ;5 * ET +
i=0 j=0
N+1N+1
Z Z djj * yi * ED
i=0 j=0

+Maximize customer satisfaction:
N
max TotalSatisfaction= Z CustomerSatisfactiony
k=1
- Basic Constraints:
+Each guest is delivered exactly once by either truck
or drone or both.

+Drones can only deliver goods with the available
volume of the drone and within the available range from
the current location.

+The drone must return to the truck to recharge the
battery and retrieve the parcel for the next flight.

+ All parcels must be delivered to the customer.

+ Both vehicles must start and end at the depot.
4. PROPOSED METHODOLOGY

In this chapter, we present in detail the solution
framework for combining SARSA and Q-learning to solve
the TSPD problem, including: SarsaT for truck route

optimization, SarsaD for truck-drone coordination and Q-
learning with a process similar to SARSA.

4.1. Markov model and basic components

- Environment: Set customer points C={0, 1, ..., n}, where
0 is the depot. Each point i has coordinates (x,y;), demand,
and delivery lead time T..

- Agent: Duo of trucks and drones. Trucks are
responsible for carrying heavy goods at a speed of 50
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units of distance/h; Light cargo drones with lower speeds
and limited range.

- State (s):
+With SarsaT: the current index of the truck.

+With SarsaD: position pairs (i,j) correspond to trucks
atiand drones atj.

- Action (a):

+SarsaT: select unserved keC points.
+SarsaD:

= The two vehicles meet.

= The truck continues to move independently
according to the SarsaT route, not affected by the position
of the drone.

= Drones serve customers in flight range.
- Reward (r):

1
CustomerSatisfaction

reward = a * DeliveryGHG + 3 *
Where:

+DeliveryGHG:  Emissions  generated  when
transporting goods.

. . distance
+DeliveryTime = ———.
ry speed

4.2. SARSA for truck (SarsaT)

- Objective: Find the optimal route for the truck when
operating independently.

- State Space: The index of the current point where
the truck is (0 for depot, 1, 2, 3, ... for customers).

- Agent: truck.

- Action Space: Indicators of availability points
(customers who have not yet delivered).

- Update Q-table:
+Updated formula for SARSA:
Q(s,a) « Q(s,a)
+o * (reward + y * Q(s’,a’) — Q(s,a)) (5)
Where:
= s: Current status.
= a: The next action is selected from s.
= s": Next state (after performing action a).
= a": The next action is selected from s'.
= a: Learning rate.
= y: Discount factor.

- Action Pick Strategy: Use e-greedy strategy with
€=0.99:
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+99% of the time we will choose the action with the
smallest Q value, which corresponds to the overall goal
minimization.

+1% choose random actions to explore other
possibilities.

- Coaching process:

+Run 2*n episodes, with n being the number of
customers.

+In each training episode:
= Trucks start from depot.

» Repeat until the final state is reached (all items have
been delivered to all customers):

1. Select action a (next point) based on e-greedy.
2. Move to the next point, calculate the reward.
3. Update Q-table.

4. Status Updatess «s'.

= When all customers are delivered, the truck returns
to the depot.

+ Save the route with the smallest total target value
after 2*n episodes.

- Space for action:
+Drones and trucks meet at one point.

+The truck moves independently to the next pointin
the existing route without considering the current state
of the drone.

+Customer-available coordinates for drone based on
hanging configuration characteristics.

- Reward:
+When two vehicles meet:

= The drone moves to the truck location or vice versa,
depending on the available distance of the drone, giving
priority to the drone to the truck's location if available.

= If the drone reaches the truck location:

reward = distance(postitiong gpe, Positiongycx) * ED
= If the truck reaches the drone location:

reward = distance(postition.,cx, positiongrone) * ET
+When the truck moves independently:
= The truck goes to the next stop on the route.

recentPosition;,yck,

» reward = distance .
nextPosition cx

)*ET

K Input: a=0.01, € = 0.99, y = 0.9, customer’s properties

2. Loop for each episode:

3. Initialize S
5. Loop for each step of episode:

7. Take action A, observe R, S’
8. O(S, 4) — O(S, A) + a*[R+y*Q(S, A) — O(S, A)]

\9. S—§

Output: Truck’s route, total green house gas, total customer satisfaction

1. Initialize Q(s, a), for all s € S*, a € A(s), arbitrarily except that Q(terminal,-) =0

4. Choose A from S using policy derived from tenNearestLocation and Q(e.g.,e-greedy)

6. Choose A’ from S using policy derived from tenNearestLocation and Q (e.g., e-greedy)

~

/

Figure 1. SarsaT algorithm pseudo-code
4.3, SARSA for drone (SarsaD)

- Objective: Based on the optimal route of the truck
from SarsaT, learn how to integrate drones to improve the
target function.

- State Space: A series of representations of the
current position of trucks and drones, in the form of "truck
position"|" Drone location" (example: "0|0" if both are at
the depot, "1|2"if the truck is in customer 1 and the drone
is in customer 2).
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+When the action is a position within the available
range of the drone:

= The drone delivers the goods to the selected point,
the truck simultaneously moves to the next point.

. recentPosition )
= reward = distance . ouckr) g
nextPosition ek
. recentPostition ,
+ distance .. drone’) , £h
nextPositiongpone

- Q-table Update: Similar to SarsaT.
- Strategy to choose action: similar to SarsaT.
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- Coaching process:
+Based on truck route from SarsaT.
+Run 2*n episodes:
= Truck and drone start from depot.

» Repeat until the final state is reached (all items have
been delivered to all customers):

1. Choose an action for a drone from the action space
according to the action selection strategy.

2. Update location, GHG, time, satisfaction level.
3. Q-table Updates.
4. Status Updates.

= When all the customers are delivered, they both
return to the depot.

+Save the route with the smallest target value after
2*n episodes.

= s": Next state (after performing action a).
= a": The next action is selected from s'.

= a: Learning rate.

= y: Discount factor.

From this, we can see that Q-learning algorithms can
converge faster in some cases, but may not fully consider
the risks.

In summary, the proposed solutions not only meet the
requirements of routing optimization but also exploit the
advantages of reinforcement learning in the real
environment. Next, the experimental evaluation on the
dataset and simulation scenario will be presented in
detail, from which the performance will be compared, the
results will be analyzed, and conclusions will be drawn
about the feasibility of the method.

Input: a =0.01,€=0.99, y = 0.9, customer’s properties, truck’s route

SarsaD, perform getLocationForDrone.
. Loop for each episode:

. Initialize S

. Loop for each step of episode:

. Take action 4, observe R, S’

O(S, A) = OS, A) + oa*[R+y*O(S", 4) = O(S, 4)]
9.8« S8

10. Until S is terminal

0 9 N L BN

Output: Truck’s route, Drone’s route, total green house gas, total customer satisfaction
1. Initialize O(s, a), for all s € S, a € A(s), arbitrarily except that Q(terminal, -) = 0, take data from

. Choose 4 from S using policy derived from tenNearestLocation and Q(e.g.,

. Choose 4" from S using policy derived from tenNearestLocation and Q(e.g., e-greedy)

e-greedy)

Figure 2. SarsaD algorithm pseudo-code
4.4. Q-learning

The Q-learning algorithm is similar to the SARSA
algorithm in most respects because SARSA is based on Q-
learning, but the difference lies in the Q_table update
formula. In the Q-learning algorithm, the Q_table table is
updated based on the hypothetical optimal action rather
than the actual optimal action as for SARSA. Specifically,
Q-learning's Q_table update formula:

Updated Formula for Q-learning:
Q(s,a) « Q(s,a)
+a * (reward + y * maxQ(s’,A) — Q(s,a))(6)
Trong do6:
= s: Current status.
= a: The next action is selected from s.
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5. EXPERIMENTAL
5.1. Description of experimental data

Data for the problem of vehicle routing combined
with a drone

Author: Do Thi Ngoc Huyen

Last Updated: 17/12/2024

Data sets used: 50 cities, 100 cities, 200 cities
Values in the dataset:

+Column 1, column 2 (X, Y): coordinates in two-
dimensional space.

+Column 3 (Demand): the volume of goods of the
customer.
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+Column 4 (Time satisfaction): maximum customer
delivery lead time.

5.2. Experimental environment settings

All simulations are performed on a computer using an
11th Gen Intel(R) Core(TM) i5-11320H processor @
3.20GHz (2.50GHz), 8GB RAM, Windows 11 64-bit
operating system, using the Python programming
language.

To ensure that the evaluation of the model is objective
and comprehensive, each model will be trained 20 times
independently, each time on a different dataset. These
datasets are designed to simulate diverse scenarios,
representing a variety of scenarios that can occur in real
life. The purpose of this is to test the generalization of the
model under a variety of conditions, without being
dependent on a fixed data set.

After completing 20 training and assessments, the
final result will be calculated by taking the average of all
20 runs. This method minimizes random fluctuations in
data and training, which in turn provides a more accurate
view of the overall performance of the model.

The evaluation indicators of the model and the
parameters of the environment will be presented in detail
in the table below. These metrics include both important
hyperparameters that directly affect the training and
performance of the model, as well as the characteristic
elements of the test environment.

Table 1. Model parameters

Parameter SARSA Qlearning

Number of customers 50, 100, 200
Episodes 100, 200, 400
Learning rate (a) 0.01
Discount factor (y) 0.9
Exploitation - discovery rate (€) 0.9

Table 2. Algorithm parameters

Attribute Par.:\rr::ters Pa:)arr(:l':ers

Velocity (distance unit/hour) 50 43.2
Capacity (unit of goods) 1500 1
Travel range (Distance Unit) 674.3 14.4
Greenhouse gas emission factor Unlimited 4
(in GHG units per unit of distance)
Mode of operation Independent Depend

Vol. 61 - No. 9E (Sep 2025)

5.3. Experimental Results

Symbol C_x_Ep_y_Q_z: Number of Clients: x, Number of
Training Episodes: y, Initialized QTable Value: z.

Effect of QTable initialization value on results
obtained:

Table 3. Results obtained with C_50_Ep_100_Q_0

. Processing Total emissions | Total customer
Algorithm . N
time generated satisfaction
SARSA 6.26 £0.47 | 102992.40 + 4413.02 |3574.99 +608.88
Qlearning | 6.51£0.66 | 105572.30 £9534.12 | 3665.59+874.37

From Table 3, we can see that the SARSA algorithm
has a faster processing speed than QLearning because it
has a simpler update process due to the nature of on-
policy, and is less volatile in learning.

Table 4. Results obtained with C_50_Ep_100_Q_1000

Processing | Processing Total emissions Total customer
time time generated satisfaction
SARSA 6.14+£0.89 | 222871.66 + 11466.54 |1835.43 £ 608.89

Qlearning | 6.35+0.65 | 223278.60 +20295.33 | 1887.57 +533.15
3000 : S:res:ming

2500 A

Fitness

2000 +

1500

1000

0 25 50 75 100 125 150 175 200

Iteration
a)
| ] —&— Q-learning
30001 ) -m- Sarsa

2900

2800 A

2700 A

2600 -

Fitness

2500

2400

2300 A

2200 -

0 25 50 75 100 125 150 175 200
Iteration

b)

Figure 3. Compare the results with Qtable = 0 (a) and Qtable = 1000 (b)
with the same number of episodes
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From Figure 3, we can see that, with Qtable = 0 in
Figure 3a, both algorithms show that fitness drops from
an initial high of 3000 to a low of 1000 after 200 iterations,
but Q-learning drops faster and stabilizes at a lower level
than Sarsa. With Qtable = 1000 in Figure 3b, the initial
fitness is higher at about 3000 and decreases rapidly in
the early stages. However, the fatigue in the later stages
drops more slowly at around 2200-2300 also with 200
repetitions. With the same number of loops, initializing a
Qtable = 0 value consistent with the policy objective used
by both algorithms has shown superiority over initializing
Qtable = 1000 in the ability to expand the search space to
be able to come up with better options in later stages.

Table 5. Results obtained with C_50_Ep_100_Q_0

. Processing Total emissions | Total customer
Algorithm . P
time generated satisfaction
SARSA 6.26+0.47 | 102992.40 + 4413.02 |3574.99 +608.88
Qlearning | 6.51£0.66 | 105572.30 £9534.12 |3665.59 + 874.37

Table 6. Results obtained with C_50_Ep_200_Q_1000

From Table 5, Table 6 and Figure 4, we can see that, the
processing speed of each algorithm is affected by the size
of the input data, as with a set of 50 customers, both
algorithms only take an average of 6 seconds, when the
data increases to 100 customers, the processing time
increases to 10 seconds. With Qtable = 0 in Figure 4a, both
algorithms show a sharp drop in fitness after 50 cycles with
200 repetitions, it has dropped from an initial high of 3000
to alow of 1000. With Qtable = 1000 in Figure 4b, the initial
fitness is higher than about 3000 and drops deeply in the
early stages, but in the later stages, it is stagnant and can
only drop below 2100. In short, although the number of
loops has increased, the failure to find new possibilities
quickly has caused the initialization of Qtable = 100 values
to experience slow and high convergence, compared to
the initialization of Qtable = 0 values consistent with the
policy objectives used by both algorithms that have
helped to find new cases in the search space Earn faster
and produce better results.

Evaluation of Algorithm Convergence
Table 7. Results obtained with C_50_Ep_100_Q_0

. Processing Total emissions | Total customer
Algorithm . P
time generated satisfaction
SARSA 10.35+0.59 | 218918.10 +4234.25 |1897.23 £353.73
Qlearning | 9.78%+1.23 | 217584.49 +5108.60 |1918.06 £ 582.65

3000 4

2500 4

Fitness

2000 +

1500 A

1000 4

—e&— Q-learning
—-m-

Sarsa

25 50

75 100
Iteration

3000

2800

2600

Fitness

2400 A

22004

—&— Q-learning
—M- Sarsa

50 100

200 250

. Processing Total emissions | Total customer
Algorithm . P
time generated satisfaction
SARSA 6.26 £0.47 | 102992.40 + 4413.02 | 3574.99 + 608.88
Qlearning | 6.51+0.66 | 105572.30 +9534.12 |3665.59 + 874.37
Table 8. Results obtained with C_100_Ep_200_Q_0
. Processing |  Total emissions Total customer
Algorithm . P
time generated satisfaction
SARSA  [30.65+4.13 | 967961.40 = 42895.95 | 11617.80 +712.91
QlLearning [32.00 +4.80| 954218.60 + 45682.63 |11884.27 +1162.70

Table 9. Results obtained with C_100_Ep_400_Q_0

Algorithm

Processing
time

Total emissions
generated

Total customer
satisfaction

SARSA

51.54+£3.66

956208.73 +43194.74

11944.09 + 957.2005

QLearning

53.66 £ 2.50

941724.30 £ 55954.40| 1

1497.11£1213.29

3000

Fitness

2000 A

—e— Q-learning
-m-

Sarsa

150
Iteration
b) o (.3 25 50 7.'71 160 ].iS 150 17"? 260
Figure 4. Compare the results with Qtable = 0 (a) and Qtable = 1000 (b) feraen
with different number of episodes a)
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35000
5 3 —e— Q-learning

X‘_“ﬁ —m- Sarsa

30000 4

25000

fitness

20000 4

15000

10000 4

NN

' ' . ' ' ' ' '
[} 50 100 150 200 250 300 350 100
Iteration

b)

—e— Q-learning
—m- Sarsa

35000

30000

25000 4

fitness

20000

15000 4

10000 = =

o 100 200 300 400 500 600 700 800
Iteration

q

Figure 5. Convergence of algorithms through datasets a: 50, b: 100, c: 200

Based on the results presented in Tables 7, 8, and 9, as
well as Figure 5, it is evident that initializing the Q-table
with zeros leads to convergence within approximately
twice the number of customers in training loops. This is
attributed to the rapid and extensive exploration of new
cases in the state space.

Comparison of SARSA and Q-learning with existing
methods

- Large Neighborhood Search (LNS)
- Greedy Large Neighborhood Search (Greedy LNS)
- Adaptive Large Neighborhood Search (ALNS)

4 -~ Q-learning
} -m- Sarsa
3000 A —k= LNS
1 --%-  Greedy LNS
i ALNS
25009 &
. |
i AN
520004 :
uw
1500 4
. e,
1000 4 w : sroasriforrasseiloasrraclass i X KA

' .
0 25 50 75 100 125 150 175 200
lteration
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5 —8— Q-learning
\ -M- Sarsa
100000 rj\ —&= LNS
'5'\ -%- Greedy LNS
£y ALNS
800004 £
b
2 60000 1
&
40000
20000 4
T T T ) T T T T T
0 25 50 75 100 125 150 175 200
Iteration
% —o— Q-learning
‘t -m- Sarsa
200000 2\ —k= LNS
\ -%- Greedy LNS
B ALNS
150000 1
@
@
<]
* 100000
50000

T T T T
0 50 100 150 200 250
Iteration

Figure 6. Comparison with 50, 100, 200 city datasets

Table 10. Runtime of local search algorithms on datasets

Dataset
) 50 cities 100 cities 200 cities
Algorithm
LNS 1.4s 10.81s 365.65
Greedy LNS 1.8s 10.96s 264.765
ALNS 0.7s 12.1s 187.365

Table 11. Results obtained by local search algorithms on datasets

Dataset
50 cities 100 cities 200 cities
Algorithm
LNS 879.92 27605.26 64959.36
Greedy LNS 960.92 20678.4 31659.64
ALNS 764.8 27605.26 22478.92

From the presented figures and tables, it is evident
that in small-scale environments, basic local search
algorithms such as LNS, Greedy LNS, and ALNS
demonstrate significant advantages in terms of
convergence speed and solution quality (i.e., lower
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fitness values) when compared to reinforcement learning
approaches like Q-learning and Sarsa. These heuristic
methods efficiently explore the solution space and are
capable of rapidly identifying optimal solutions.
However, as the problem scale increases and the
environment becomes more complex, reinforcement
learning models begin to exhibit superior performance.
Owing to their dynamic balance between exploration
and exploitation, algorithms like Q-learning and Sarsa
progressively refine their performance, effectively
overcoming the local optima issues that heuristic
methods typically face. Consequently, in large and
diverse search spaces, reinforcement learning
approaches show enhanced robustness and deliver
improved solution quality.

In summary, reinforcement learning methods such as
Q-learning and Sarsa demonstrate strong potential when
addressing large and complex search spaces. While their
initial convergence may be slower compared to heuristic
approaches, these models progressively enhance both
accuracy and stability over successive iterations,
ultimately yielding highly optimal solutions for large-
scale combinatorial problems.

6. CONCLUSION

This study investigated the use of reinforcement
learning to address the Truck and Drone Delivery
Problem, aiming to enhance delivery efficiency, reduce
operational costs, and improve customer satisfaction. By
applying Q-learning and SARSA algorithms, the research
demonstrated that reinforcement learning is well-suited
to solving complex routing challenges, offering notable
advantages over conventional methods. The findings
indicate that Q-learning achieves faster convergence and
superior performance on larger datasets, whereas SARSA
provides more consistent and stable results. Both
algorithms yielded near-optimal solutions, with
performance deviations remaining within acceptable
bounds when compared to heuristic-based local search
methods.  Future research  directions include
incorporating real-world constraints such as traffic
conditions, drone energy limitations, and dynamic terrain
features. Additionally, adopting more advanced
reinforcement learning techniques and exploring multi-
agent frameworks could further enhance model
effectiveness, bridging the gap between theoretical
optimization models and their practical applications in
logistics

96 | HaUl Journal of Science and Technology

REFERENCES

[1]. Chung, Sung Hoon, Bhawesh Sah, Jinkun Lee, "Optimization for drone
and drone-truck combined operations: A review of the state of the art and
future directions," Computers & Operations Research, 123: 105004, 2020.

[2]. Kong Fanhui, Bin Jiang, "Delivery optimization for collaborative truck-
drone routing problem considering vehicle obstacle avoidance," Computers &
Industrial Engineering, 198: 110659, 2024.

[3]. Wang Yong, et al. "Research on truck-drone collaborative route
planning for rural logistics delivery services," Scientific Reports, 14.1 (2024):
31815.

[4]. Arishi Ali, Krishna Krishnan, Majed Arishi, "Machine learning
approach for truck-drones based last-mile delivery in the era of industry
4.0," Engineering Applications of Artificial Intelligence, 116: 105439, 2022.

[5]. Sutton R.S., Barto A.G., Reinforcement Learning: An Introduction, 2nd
ed. MIT Press, 2018.

[6]. Clifton J., Laber E., “Q-learning: Theory and applications,” Annual
Review of Statistics and Its Application, 7(1), 279-301, 2020.

[7]. Bogyrbayeva A., Yoon T., Ko H., Lim S., Yun H., Kwon C,, “A deep
reinforcement learning approach for solving the traveling salesman problem
with drone,” Transportation Research Part C: Emerging Technologies, 148,
103981, 2023.

Vol. 61 - No. 9E (Sep 2025)



