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ABSTRACT 

Recently, the problem of transportation routing with integrated drones 
in IoT-based logistics has emerged as a prominent research area within the 
academic community. It is particularly important for IoT applications in the 
transportation and logistics sectors, especially in last-mile delivery. Drones 
take off from predefined stop points to serve customers and then land at hubs 
to connect with other vehicles for continued delivery, all while adhering to 
constraints such as flight range and payload capacity. Integrating drone and 
vehicle routing poses unique challenges due to the need to synchronize both 
drone and vehicle schedules to optimize overall delivery time or system costs. 
In this paper, we introduce the Traveling Salesman Problem with Drone 
(TSPD) to optimize delivery costs. We then develop two efficient algorithms 
to address the TSPD. Our Q-learning and Sarsa algorithms enable a drone, 
transported by a vehicle, to deliver multiple parcels to customers at different 
locations, with the goal of minimizing delivery costs and maximizing 
customer satisfaction upon parcel delivery. Through experiments on 
artificially generated realistic scenarios, the results demonstrate that the 
proposed algorithms achieve promising computational performance. 
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1. INTRODUCTION 

The Truck and Drone Routing Problem (TSPD) is an 
extended variant of the classic Traveling Salesman 
Problem (TSP), which requires synchronization of both 
ground vehicle and drone routes to achieve optimal 

delivery cost and time [1]. TSPD has broad applications in 
logistics, last-mile delivery, robot scheduling, and supply 
chain planning due to its ability to reduce transportation 
costs, save fuel, and enhance customer experience. 

Theoretically, the TSPD belongs to the class of NP-
hard problems and becomes increasingly complex when 
additional constraints such as drone flight range, payload 
capacity, and time windows are introduced [2]. Scaling up 
the problem significantly enlarges the search space, 
which limits the practicality of exact methods like branch-
and-bound or dynamic programming due to resource 
constraints. Meanwhile, heuristic and metaheuristic 
algorithms (e.g., genetic algorithms, ant colony 
optimization) must strike a balance between 
computational speed and solution quality [3]. 

The Reinforcement Learning (RL) model offers a novel 
approach to the TSPD by enabling an agent to 
autonomously explore and learn optimal policies 
through interaction with the environment [4]. Instead of 
exhaustively searching the entire solution space, RL 
adjusts its strategy based on experience, allowing it to 
quickly generate near-optimal solutions with lower 
computational cost. This is especially suitable for real-
time scenarios and large-scale or previously unseen data. 
Applying RL to the TSPD not only provides an effective 
way to solve the drone-assisted delivery problem but also 
opens the door for transferring the technology to other 
complex optimization problems. 

2. RELATED WORKS 

In recent years, the integration of unmanned aerial 
vehicles (UAVs), particularly drones, into logistics and 
delivery systems has garnered increasing attention. 
Numerous studies have concentrated on optimizing 
drone and truck-drone collaborative operations. Chung 
et al. [1] presented a comprehensive review of the state-
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of-the-art in combined drone and truck operations, 
identifying key challenges and outlining future research 
directions related to routing, scheduling, and system 
integration. Expanding on this work, Kong and Jiang [2] 
investigated the truck-drone collaborative routing 
problem and proposed a delivery optimization method 
that accounts for vehicle obstacle avoidance - an 
essential consideration in urban logistics environments. 
Likewise, Wang et al. [3] examined collaborative route 
planning for rural logistics, highlighting the benefits of 
drone-truck coordination in sparsely populated areas. 

Focusing on last-mile delivery, Arishi et al. [4] 
employed machine learning techniques to improve the 
efficiency of truck-drone systems, particularly within the 
context of Industry 4.0. Collectively, these studies 
underscore the growing significance of intelligent 
algorithms in enhancing drone-assisted logistics 
operations. 

Simultaneously, reinforcement learning (RL) has 
emerged as a robust framework for solving sequential 
decision-making and combinatorial optimization 
problems. The seminal work by Sutton and Barto [5], 
along with the theoretical advancements in Q-learning 
by Clifton and Laber [6], has laid a strong foundation for 
applying RL techniques to routing and delivery 
optimization. Notably, Bogyrbayeva et al. [7] 
implemented a deep reinforcement learning approach to 
tackle the Traveling Salesman Problem with Drone  
(TSP-D), demonstrating that RL-based methods can 
effectively generate near-optimal solutions for this NP-
hard problem. Their research serves as a critical step 
toward the development of more scalable and efficient 
learning-based algorithms for drone-assisted routing. 

These contributions collectively emphasize the 
promising potential of integrating reinforcement 
learning with drone logistics to address the TSP-D, 
thereby motivating continued research into more 
adaptive, robust, and efficient RL-based solutions. 

3. PROBLEM STATEMENT 
3.1. Preliminaries  

Point 
- Definition: A node represents either a customer or a 

depot, depicted as a point on a 2D plane with coordinates 
(x,y). 

- The distance between two points is calculated using 
the Euclidean distance: 

d(A, B) =  �(x� − x�)� + (y� − y�)�  

- Customer’s attributes: 

 Demand - weight of goods to be delivered. 

 Time satisfaction - time priority coefficient. 

- Depot’s attributes: located at the origin (0,0); 
demand = 0 and time satisfaction = 0. 

Calculation of Greenhouse Gas Emissions 

TotalGHG =  ∑ ∑ d�� ∗ x�� ∗ ET +���
���

���
���   

∑ ∑ d�� ∗ y�� ∗ ED���
���

���
���                         (1) 

where:  

 ET: Greenhouse gas emission factor of the truck. 

 ED: Greenhouse gas emission factor of the drone. 

 dij: Distance between customers i and j. 

 xij: Binary variable equals 1 if there is a truck route 
from customer i to j, and 0 otherwise. 

 yij: Binary variable equals 1 if there is a drone route 
from customer i to j, and 0 otherwise. 

Increasing the proportion of deliveries made by 
drones significantly reduces this value due to their low 
emission factor. 

Calculation of customer satisfaction 

Delivery time window for the kth customer: 

DeliveryTime
�

=
d ���,�

���������������
+ waiting_time

���
    (2) 

Customer satisfaction of the kth customer upon 
delivery: 

CustomerSatisfaction� =
TimeSatisfaction�

DeliveryTime�

                        (3) 

Total Satisfaction: 

 TotalSatisfaction= ∑ CustomerSatisfaction�
 �
���      (4) 

Faster delivery leads to higher customer satisfaction, 
reflecting a better customer experience. 

3.2. Problem description 

The TSPD problem can be defined as follows: Given a 
set of customer locations C = {c1,c2,…,cn} and a distance 
matrix D, where dij denotes the distance between 
customer ci and cj. Each customer ci has a specified 
delivery time ti indicating the latest time the delivery 
should occur, along with a parcel weight requirement. A 
coordinated fleet of trucks and drones is used to fulfill 
these deliveries. After completing each delivery, the 
drone must return to the truck to recharge and collect the 
next package. Both the truck and the drone release 
greenhouse gases during their operations. The goal is to 
determine a delivery route that ensures all parcels are 
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delivered through the combined efforts of the truck and 
drone. The problem can be formally stated as: 

- Input:  

 A dataset containing a list of points. 

 Indices of transportation vehicles including trucks 
and drones. 

- Output: 

 The routes of trucks and drones.  

 The total greenhouse gas emissions and the overall 
customer satisfaction achieved. 

- Objective: 

+ Minimization of emissions generated: 

min TotalGHG =  � � d�� ∗ x�� ∗ ET +

���

���

���

���

 

� � d�� ∗ y�� ∗ ED

���

���

���

���

 

+ Maximize customer satisfaction: 

max TotalSatisfaction= � CustomerSatisfaction�

�

���

 

- Basic Constraints: 

 Each guest is delivered exactly once by either truck 
or drone or both. 

 Drones can only deliver goods with the available 
volume of the drone and within the available range from 
the current location. 

 The drone must return to the truck to recharge the 
battery and retrieve the parcel for the next flight. 

 All parcels must be delivered to the customer. 

 Both vehicles must start and end at the depot. 

4. PROPOSED METHODOLOGY 

In this chapter, we present in detail the solution 
framework for combining SARSA and Q-learning to solve 
the TSPD problem, including: SarsaT for truck route 
optimization, SarsaD for truck-drone coordination and Q-
learning with a process similar to SARSA. 

4.1. Markov model and basic components 

- Environment: Set customer points C = {0, 1, ..., n}, where 
0 is the depot. Each point i has coordinates (xi,yi), demandi 
and delivery lead time Ti. 

- Agent: Duo of trucks and drones. Trucks are 
responsible for carrying heavy goods at a speed of 50 

units of distance/h; Light cargo drones with lower speeds 
and limited range. 

- State (s): 

 With SarsaT: the current index of the truck. 

 With SarsaD: position pairs (i,j) correspond to trucks 
at i and drones at j. 

- Action (a): 

 SarsaT: select unserved k∈C points. 

 SarsaD: 

 The two vehicles meet. 

 The truck continues to move independently 
according to the SarsaT route, not affected by the position 
of the drone. 

 Drones serve customers in flight range. 

- Reward (r): 

reward =  α ∗ DeliveryGHG + β ∗
1

CustomerSatisfaction
 

Where: 

+ DeliveryGHG: Emissions generated when 
transporting goods. 

+ DeliveryTime =  
��������

�����
. 

4.2. SARSA for truck (SarsaT) 
- Objective: Find the optimal route for the truck when 

operating independently. 

- State Space: The index of the current point where 
the truck is (0 for depot, 1, 2, 3, ... for customers). 

- Agent: truck. 

- Action Space: Indicators of availability points 
(customers who have not yet delivered). 

- Update Q-table: 

 Updated formula for SARSA: 

Q(s, a) ← Q(s, a) 

                       +α ∗ (reward + γ ∗ Q(s�, a�) − Q(s, a))      (5) 

Where:  

▪ s: Current status. 

▪ a: The next action is selected from s. 

▪ s’: Next state (after performing action a). 

▪ a’: The next action is selected from s’. 

▪ α: Learning rate. 

▪ γ: Discount factor. 

- Action Pick Strategy: Use ε-greedy strategy with  
ε = 0.99: 
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+ 99% of the time we will choose the action with the 
smallest Q value, which corresponds to the overall goal 
minimization. 

+ 1% choose random actions to explore other 
possibilities. 

- Coaching process: 

+ Run 2*n episodes, with n being the number of 
customers. 

+ In each training episode: 

▪ Trucks start from depot. 

▪ Repeat until the final state is reached (all items have 
been delivered to all customers): 

1. Select action a (next point) based on ε-greedy. 

2. Move to the next point, calculate the reward. 

3. Update Q-table. 

4. Status Updates s ← s’. 

▪ When all customers are delivered, the truck returns 
to the depot. 

+  Save the route with the smallest total target value 
after 2*n episodes. 

Figure 1. SarsaT algorithm pseudo-code  

4.3. SARSA for drone (SarsaD) 

- Objective: Based on the optimal route of the truck 
from SarsaT, learn how to integrate drones to improve the 
target function. 

- State Space: A series of representations of the 
current position of trucks and drones, in the form of "truck 
position"|" Drone location" (example: "0|0" if both are at 
the depot, "1|2" if the truck is in customer 1 and the drone 
is in customer 2). 

- Space for action: 

+ Drones and trucks meet at one point. 

+ The truck moves independently to the next point in 
the existing route without considering the current state 
of the drone. 

+ Customer-available coordinates for drone based on 
hanging configuration characteristics. 

- Reward:  

+ When two vehicles meet: 

▪ The drone moves to the truck location or vice versa, 
depending on the available distance of the drone, giving 
priority to the drone to the truck's location if available. 

▪ If the drone reaches the truck location: 

reward =  distance(postition�����, position�����) ∗ ED 

▪ If the truck reaches the drone location: 

reward =  distance(postition�����, position�����) ∗ ET 

+ When the truck moves independently: 

▪ The truck goes to the next stop on the route. 

▪ reward =  distance �
recentPosition�����,

nextPosition�����
� ∗ ET  

 

 

 

 

 

 

 

 

 

 

 

 

 
+ When the action is a position within the available 

range of the drone: 
▪ The drone delivers the goods to the selected point, 

the truck simultaneously moves to the next point. 

▪ reward = distance �
recentPosition�����,

nextPosition�����
� ∗ ET  

    + distance �
recentPostition�����,

 nextPosition�����
� ∗ ED  

- Q-table Update: Similar to SarsaT. 
- Strategy to choose action: similar to SarsaT. 

Input: α = 0.01, ε = 0.99, γ = 0.9, customer’s properties 

Output: Truck’s route, total green house gas, total customer satisfaction 

1. Initialize Q(s, a), for all s Є S+, a Є A(s), arbitrarily except that Q(terminal, ·) = 0 

2. Loop for each episode: 

3. Initialize S 

4. Choose A from S using policy derived from tenNearestLocation and Q(e.g.,ε-greedy) 

5. Loop for each step of episode: 

6. Choose A’ from S’ using policy derived from tenNearestLocation and Q (e.g., ε-greedy) 

7. Take action A, observe R, S’ 

8. Q(S, A) ← Q(S, A) + α*[R + γ*Q(S’, A’) − Q(S, A)] 

9. S← S’ 
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- Coaching process: 

+ Based on truck route from SarsaT. 
+ Run 2*n episodes: 

▪ Truck and drone start from depot. 

▪ Repeat until the final state is reached (all items have 
been delivered to all customers): 

1. Choose an action for a drone from the action space 
according to the action selection strategy. 

2. Update location, GHG, time, satisfaction level. 

3. Q-table Updates. 
4. Status Updates. 
▪ When all the customers are delivered, they both 

return to the depot. 

+ Save the route with the smallest target value after 
2*n episodes. 

Figure 2. SarsaD algorithm pseudo-code 

4.4. Q-learning 
The Q-learning algorithm is similar to the SARSA 

algorithm in most respects because SARSA is based on Q-
learning, but the difference lies in the Q_table update 
formula. In the Q-learning algorithm, the Q_table table is 
updated based on the hypothetical optimal action rather 
than the actual optimal action as for SARSA. Specifically, 
Q-learning's Q_table update formula: 

Updated Formula for Q-learning: 

Q(s, a) ← Q(s, a) 
              +α ∗ (reward + γ ∗ maxQ(s�, A ) − Q(s, a))(6) 

Trong đó:  
▪ s: Current status. 
▪ a: The next action is selected from s. 

▪ s’: Next state (after performing action a). 

▪ a’: The next action is selected from s’. 
▪ α: Learning rate. 

▪ γ: Discount factor. 

From this, we can see that Q-learning algorithms can 
converge faster in some cases, but may not fully consider 
the risks. 

In summary, the proposed solutions not only meet the 
requirements of routing optimization but also exploit the 
advantages of reinforcement learning in the real 
environment. Next, the experimental evaluation on the 
dataset and simulation scenario will be presented in 
detail, from which the performance will be compared, the 
results will be analyzed, and conclusions will be drawn 
about the feasibility of the method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. EXPERIMENTAL 

5.1. Description of experimental data 

Data for the problem of vehicle routing combined 
with a drone 

Author: Do Thi Ngoc Huyen 

Last Updated: 17/12/2024 

Data sets used: 50 cities, 100 cities, 200 cities 

Values in the dataset: 

+ Column 1, column 2 (X, Y): coordinates in two-
dimensional space. 

+ Column 3 (Demand): the volume of goods of the 
customer. 

Input: α = 0.01, ε = 0.99, γ = 0.9, customer’s properties, truck’s route 

Output: Truck’s route, Drone’s route, total green house gas, total customer satisfaction 

1. Initialize Q(s, a), for all s Є S+, a Є A(s), arbitrarily except that Q(terminal, ·) = 0, take data from 

SarsaD, perform getLocationForDrone.  

2. Loop for each episode:  

3. Initialize S  

4. Choose A from S using policy derived from tenNearestLocation and Q(e.g.,     ε-greedy)  

5. Loop for each step of episode:  

6. Choose A’ from S’ using policy derived from tenNearestLocation and Q(e.g., ε-greedy)  

7. Take action A, observe R, S’  

8. Q(S, A) ← Q(S, A) + α*[R + γ*Q(S’ , A’) − Q(S, A)] 

9. S← S’  

10. Until S is terminal 
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+ Column 4 (Time satisfaction): maximum customer 
delivery lead time. 

5.2. Experimental environment settings 

All simulations are performed on a computer using an 
11th Gen Intel(R) Core(TM) i5-11320H processor @ 
3.20GHz (2.50GHz), 8GB RAM, Windows 11 64-bit 
operating system, using the Python programming 
language. 

To ensure that the evaluation of the model is objective 
and comprehensive, each model will be trained 20 times 
independently, each time on a different dataset. These 
datasets are designed to simulate diverse scenarios, 
representing a variety of scenarios that can occur in real 
life. The purpose of this is to test the generalization of the 
model under a variety of conditions, without being 
dependent on a fixed data set. 

After completing 20 training and assessments, the 
final result will be calculated by taking the average of all 
20 runs. This method minimizes random fluctuations in 
data and training, which in turn provides a more accurate 
view of the overall performance of the model. 

The evaluation indicators of the model and the 
parameters of the environment will be presented in detail 
in the table below. These metrics include both important 
hyperparameters that directly affect the training and 
performance of the model, as well as the characteristic 
elements of the test environment.  

Table 1. Model parameters 

Parameter SARSA Qlearning 

Number of customers  50, 100, 200 

Episodes 100, 200, 400 

Learning rate (α) 0.01 

Discount factor (γ) 0.9 

Exploitation - discovery rate (ε) 0.99 

Table 2. Algorithm parameters 

Attribute 
Truck 

Parameters 
Drone 

Parameters 

Velocity (distance unit/hour) 50 43.2 

Capacity (unit of goods) 1500 1 

Travel range (Distance Unit) 674.3 14.4 

Greenhouse gas emission factor 
(in GHG units per unit of distance) 

Unlimited 4 

Mode of operation Independent Depend 

5.3. Experimental Results 

Symbol C_x_Ep_y_Q_z: Number of Clients: x, Number of 
Training Episodes: y, Initialized QTable Value: z. 

Effect of QTable initialization value on results 
obtained: 

Table 3. Results obtained with C_50_Ep_100_Q_0 

Algorithm 
Processing 

time 
Total emissions 

generated 
Total customer 

satisfaction 

SARSA 6.26 ± 0.47 102992.40 ± 4413.02 3574.99 ± 608.88 

QLearning 6.51 ± 0.66 105572.30 ± 9534.12 3665.59±874.37 

From Table 3, we can see that the SARSA algorithm 
has a faster processing speed than QLearning because it 
has a simpler update process due to the nature of on-
policy, and is less volatile in learning. 

Table 4. Results obtained with C_50_Ep_100_Q_1000 

Processing 
time 

Processing 
time 

Total emissions 
generated 

Total customer 
satisfaction 

SARSA 6.14 ± 0.89 222871.66 ± 11466.54 1835.43 ± 608.89 

QLearning 6.35 ± 0.65 223278.60 ± 20295.33 1887.57 ± 533.15 

 
a) 

 
b) 

Figure 3. Compare the results with Qtable = 0 (a) and Qtable = 1000 (b) 
with the same number of episodes 
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From Figure 3, we can see that, with Qtable = 0 in 
Figure 3a, both algorithms show that fitness drops from 
an initial high of 3000 to a low of 1000 after 200 iterations, 
but Q-learning drops faster and stabilizes at a lower level 
than Sarsa. With Qtable = 1000 in Figure 3b, the initial 
fitness is higher at about 3000 and decreases rapidly in 
the early stages. However, the fatigue in the later stages 
drops more slowly at around 2200-2300 also with 200 
repetitions. With the same number of loops, initializing a 
Qtable = 0 value consistent with the policy objective used 
by both algorithms has shown superiority over initializing 
Qtable = 1000 in the ability to expand the search space to 
be able to come up with better options in later stages. 

Table 5. Results obtained with C_50_Ep_100_Q_0 

Algorithm 
Processing 

time 
Total emissions 

generated 
Total customer 

satisfaction 

SARSA 6.26 ± 0.47 102992.40 ± 4413.02 3574.99 ± 608.88 

QLearning 6.51 ± 0.66 105572.30 ± 9534.12 3665.59 ± 874.37 

Table 6. Results obtained with C_50_Ep_200_Q_1000 

Algorithm 
Processing 

time 
Total emissions 

generated 
Total customer 

satisfaction 

SARSA 10.35 ± 0.59 218918.10 ± 4234.25 1897.23 ± 353.73 

QLearning 9.78 ± 1.23 217584.49 ± 5108.60 1918.06 ± 582.65 

 
a) 

 
b) 

Figure 4. Compare the results with Qtable = 0 (a) and Qtable = 1000 (b) 
with different number of episodes 

From Table 5, Table 6 and Figure 4, we can see that, the 
processing speed of each algorithm is affected by the size 
of the input data, as with a set of 50 customers, both 
algorithms only take an average of 6 seconds, when the 
data increases to 100 customers, the processing time 
increases to 10 seconds. With Qtable = 0 in Figure 4a, both 
algorithms show a sharp drop in fitness after 50 cycles with 
200 repetitions, it has dropped from an initial high of 3000 
to a low of 1000. With Qtable = 1000 in Figure 4b, the initial 
fitness is higher than about 3000 and drops deeply in the 
early stages, but in the later stages, it is stagnant and can 
only drop below 2100. In short, although the number of 
loops has increased, the failure to find new possibilities 
quickly has caused the initialization of Qtable = 100 values 
to experience slow and high convergence, compared to 
the initialization of Qtable = 0 values consistent with the 
policy objectives used by both algorithms that have 
helped to find new cases in the search space Earn faster 
and produce better results. 

Evaluation of Algorithm Convergence 

Table 7. Results obtained with C_50_Ep_100_Q_0 

Algorithm 
Processing 

time 
Total emissions 

generated 
Total customer 

satisfaction 

SARSA 6.26 ± 0.47 102992.40 ± 4413.02 3574.99 ± 608.88 

QLearning 6.51 ± 0.66 105572.30 ± 9534.12 3665.59 ± 874.37 

Table 8. Results obtained with C_100_Ep_200_Q_0 

Algorithm 
Processing 

time 
Total emissions 

generated 
Total customer 

satisfaction 

SARSA 30.65 ± 4.13 967961.40 ± 42895.95 11617.80 ± 712.91 

QLearning 32.00 ± 4.80 954218.60 ± 45682.63 11884.27 ± 1162.70 

Table 9. Results obtained with C_100_Ep_400_Q_0 

Algorithm 
Processing 

time 
Total emissions 

generated 
Total customer 

satisfaction 

SARSA 51.54 ± 3.66 956208.73 ± 43194.74 11944.09 ± 957.2005 

QLearning 53.66 ± 2.50 941724.30 ± 55954.40 11497.11 ± 1213.29 

 
a) 
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b) 

 
c) 

Figure 5. Convergence of algorithms through datasets a: 50, b: 100, c: 200 

Based on the results presented in Tables 7, 8, and 9, as 
well as Figure 5, it is evident that initializing the Q-table 
with zeros leads to convergence within approximately 
twice the number of customers in training loops. This is 
attributed to the rapid and extensive exploration of new 
cases in the state space.  

Comparison of SARSA and Q-learning with existing 
methods 

- Large Neighborhood Search (LNS) 

- Greedy Large Neighborhood Search (Greedy LNS) 

- Adaptive Large Neighborhood Search (ALNS) 

  

 
Figure 6. Comparison with 50, 100, 200 city datasets 

Table 10. Runtime of local search algorithms on datasets 

Dataset 

Algorithm 
50 cities 100 cities 200 cities 

LNS 1.4s 10.81s 365.6s 

Greedy LNS 1.8s 10.96s 264.76s 

ALNS 0.7s 12.1s 187.36s 

Table 11. Results obtained by local search algorithms on datasets 

Dataset 

Algorithm 
50 cities 100 cities 200 cities 

LNS 879.92 27605.26 64959.36 

Greedy LNS 960.92 20678.4 31659.64 

ALNS 764.8 27605.26 22478.92 

From the presented figures and tables, it is evident 
that in small-scale environments, basic local search 
algorithms such as LNS, Greedy LNS, and ALNS 
demonstrate significant advantages in terms of 
convergence speed and solution quality (i.e., lower 
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fitness values) when compared to reinforcement learning 
approaches like Q-learning and Sarsa. These heuristic 
methods efficiently explore the solution space and are 
capable of rapidly identifying optimal solutions. 
However, as the problem scale increases and the 
environment becomes more complex, reinforcement 
learning models begin to exhibit superior performance. 
Owing to their dynamic balance between exploration 
and exploitation, algorithms like Q-learning and Sarsa 
progressively refine their performance, effectively 
overcoming the local optima issues that heuristic 
methods typically face. Consequently, in large and 
diverse search spaces, reinforcement learning 
approaches show enhanced robustness and deliver 
improved solution quality. 

In summary, reinforcement learning methods such as 
Q-learning and Sarsa demonstrate strong potential when 
addressing large and complex search spaces. While their 
initial convergence may be slower compared to heuristic 
approaches, these models progressively enhance both 
accuracy and stability over successive iterations, 
ultimately yielding highly optimal solutions for large-
scale combinatorial problems. 

6. CONCLUSION 

This study investigated the use of reinforcement 
learning to address the Truck and Drone Delivery 
Problem, aiming to enhance delivery efficiency, reduce 
operational costs, and improve customer satisfaction. By 
applying Q-learning and SARSA algorithms, the research 
demonstrated that reinforcement learning is well-suited 
to solving complex routing challenges, offering notable 
advantages over conventional methods. The findings 
indicate that Q-learning achieves faster convergence and 
superior performance on larger datasets, whereas SARSA 
provides more consistent and stable results. Both 
algorithms yielded near-optimal solutions, with 
performance deviations remaining within acceptable 
bounds when compared to heuristic-based local search 
methods. Future research directions include 
incorporating real-world constraints such as traffic 
conditions, drone energy limitations, and dynamic terrain 
features. Additionally, adopting more advanced 
reinforcement learning techniques and exploring multi-
agent frameworks could further enhance model 
effectiveness, bridging the gap between theoretical 
optimization models and their practical applications in 
logistics 
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