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ABSTRACT

With the advancement of biotechnology, genetic data has become a
valuable resource for assessing disease risks. GWAS aim to identify SNPs
associated with complex diseases. However, the predictive power of GWAS
remains limited due to the complexity of genetic architectures. This study
proposes a machine learning-based approach to improve disease risk
prediction, particularly for autism spectrum disorder (ASD). By applying
feature selection using XGBoost and employing the FMNN model, the study
enhances the effectiveness of PRS prediction. Experimental results on the
AGRE autism dataset show that FMMNN outperforms traditional models,
achieving over 75% in F1-score and accuracy. The findings confirm that
combining machine learning with GWAS and PRS can effectively identify
individuals at higher genetic risk of ASD.
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1. INTRODUCTION

Nowadays, scientists can utilize DNA data to predict
an individual's risk of developing diseases. Except for
somatic mutations, DNA remains stable throughout a
person's lifetime. Therefore, genetically associated
disease risks can be identified as early as birth. This
highlights the significance of genetic risk assessment in
preventive medicine. For instance, a 2017 study
estimated that approximately 72% of women who inherit
a BRCA1 mutation and around 69% of those with a BRCA2
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mutation are likely to develop cancer before the age of 80
[1]. Identifying individuals who carry deleterious genetic
variants enables healthcare providers to offer lifestyle
modification recommendations or implement preventive
interventions tailored to their risk level.

For monogenic disorders, estimating an individual's
disease risk can often involve simply identifying
pathogenic variants in a specific gene. Genetic Linkage
Analysis (GLA) has long been employed to locate disease-
causing genes based on their co-segregation with
genetic markers on chromosomes. This method has
proven highly effective in pinpointing mutations
responsible for certain single-gene disorders, such as
Huntington’s disease [2, 3] or breast cancer [4]. However,
linkage analysis has shown limited efficacy in addressing
complex, polygenic, and common diseases.

Genome-Wide Association Studies (GWAS) have been
conducted to identify common single-nucleotide
polymorphisms (SNPs) with a minor allele frequency
(MAF) = 1% that are associated with complex traits and
diseases [5-7]. The increasing feasibility of GWAS has
been largely driven by the advancement of large-scale
SNP genotyping technologies at relatively low cost,
enabling the analysis of datasets containing hundreds of
millions of SNPs [8, 9].

Nevertheless, GWAS remains limited in its ability to
accurately predict polygenic diseases. Even when using
SNPs with strong associations to disease traits, the
predictive performance is often suboptimal [10, 11]. To
improve prediction accuracy, recent studies have focused
on selecting informative subsets of SNPs that contribute
significantly to disease risk. Modern approaches typically
incorporate both biological and statistical criteria, such as
filtering out SNPs due to linkage disequilibrium or
population stratification effects [8, 12-14].
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In addition to biologically driven approaches, various
feature selection techniques have been explored to
identify informative SNP subsets. These include machine
learning-based methods [15-17], threshold-based
filtering strategies [18], feature elimination during model
training [19-21], and approaches that capture nonlinear
interactions [22]. Such methods are increasingly
integrated into polygenic risk score (PRS) models [23],
which estimate disease risk in a target cohort using GWAS
summary statistics derived from an independent
discovery cohort [24, 25]. With the continuous
improvement in predictive model performance and the
availability of larger datasets, polygenic risk scores are
increasingly contributing to efforts in genetic risk
stratification and hold great potential for widespread
clinical application.

This work presents the following key contributions: (i)
proposing an integrated approach based on FMNN
(Fuzzy Min-Max Neural Network) and XGBoost for disease
risk prediction; (ii) enhancing the effectiveness of
polygenic risk score estimation; and (iii) implementing
data preprocessing and quality control using XGBoost.
The remainder of this paper is organized as follows.
Section 2 presents relevant background knowledge.
Section 3 provides a detailed description of the proposed
algorithm. Section 4 outlines the experimental setup and
results on the Autism GWAS dataset. The final section
offers discussion and conclusions.

2. DNA SEQUENCE ASSEMBLY

2.1. Genomic sequencing and Haplotype
reconstruction
The process of genome sequencing involves

accurately mapping the nucleotide arrangement in a
DNA strand. It plays a critical role in uncovering gene
structures and functions, as well as identifying genetic
variations associated with diseases. As a cornerstone
technology in modern molecular biology and genetics,
genome sequencing has enabled significant advances in
biomedical research and personalized medicine.

Several sequencing methodologies have been

developed, including:

- This classical approach to sequencing involves
incorporating ddNTPs that halt DNA synthesis, resulting
in length-variable fragments used to infer nucleotide
order.

- NGS (Next-Generation Sequencing): a high-
throughput technology that enables the parallel
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sequencing of millions of short DNA fragments,
significantly accelerating data generation and reducing
cost.

- TGS (Third-Generation Sequencing): a more recent
approach that allows for real-time sequencing of single
DNA molecules without the need for amplification, using
technologies such as nanopore-based sequencing or
single-molecule real-time (SMRT) sequencing to directly
observe DNA synthesis.

The next step following genome sequencing is
haplotype phasing, which involves determining the
combination of alleles located in close proximity on the
same chromosome that are inherited together from a
single parent. Identifying haplotypes not only provides a
more accurate representation of an individual’s genetic
architecture, but also plays a crucial role in studies of
complex traits and genetic linkage analysis. Haplotype
information enhances the power of association studies,
improves imputation accuracy, and offers deeper insights
into the inheritance patterns of disease-associated
variants.

2.2. GWAS

GWAS are a powerful approach used to screen
molecular markers across the entire genome in order to
identify genetic variants associated with a specific
disease or trait. The typical GWAS design involves
comparing two groups: a case group (individuals with the
disease) and a control group (individuals without the
disease). DNA is extracted from blood samples or buccal
cells and analyzed using SNP genotyping arrays. These
platforms scan the genome to detect single-nucleotide
polymorphisms (SNPs) that occur at significantly higher
frequencies in the case group. Such SNPs may serve as
important genetic markers linked to the disease or trait
under investigation..

GWAS data can be categorized into two types of
access levels:

- Summary statistics: This  dataset includes
aggregated metrics such as p-values, effect sizes (odds
ratios for binary traits or B coefficients for continuous
traits), along with SNP identifiers and their genomic
positions.

- Individual-level data: This dataset contains detailed
information for each participant, including subject
identifiers, pedigree structure, sex, phenotypic traits,
allelic information at each SNP locus, and other relevant
covariates.
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2.3. Polygenicrisk score

The Polygenic Risk Score (PRS) is calculated as the
weighted sum of risk alleles, where the weights are
derived from effect sizes estimated by GWAS. PRS serves
as a relative measure that enables clinicians to assess an
individual’s genetic predisposition to a particular disease.
In PLINK, the PRS is typically computed according to
Equation (1):

YNS;. Gy
== 1
PRS; P.M, (1
where: N - the total number of SNPs considered for
individual j; S; - the effect size of SNP i; Gi; - the number of
risk alleles of SNP i observed in individual j; M; - the total
number of non-missing SNPs observed in individual j;

P - the ploidy of the sample.

A significant proportion of GWAS results to date have
been derived from datasets with disproportionate
representation across ethnic groups - approximately 78%
of participants are of European ancestry, 10% Asian, 2%
African, 1% Hispanic, and less than 1% from all other
populations combined [26]. Moreover, polygenic risk
scores (PRS) have also been shown to capture the
contribution of polygenic effects to phenotypes that may
not be detectable through GWAS alone [27, 28].

A 2018 study by Amit V. utilized statistical inference on
genome-wide data to investigate millions of frequent
genetic variants linked to five widespread health
conditions: coronary artery disease, atrial fibrillation, type
2 diabetes, inflammatory bowel disease, and breast
cancer [29]. In 2019, a large-scale study involving 272
authors utilized GWAS data on breast cancer,
representing the largest of its kind to date. The study
aggregated data from 69 individual studies, comprising
94,075 case samples and 75,017 control samples. As a
result, a set of 313 SNPs was identified as optimal for
polygenic risk score (PRS) calculation, achieving an area
under the curve (AUC) of 63% with a 95% confidence
interval.

In addition to genetic factors, the development of a
disease may also be influenced by non-genetic factors
such as environmental exposures, lifestyle, and other
external variables. Therefore, diseases cannot be fully
predicted based on genetic information alone. The
genetic contribution accounts for only a certain
proportion, typically quantified as heritability (h?), or

more specifically, SNP-based heritability (h2, ).
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Moreover, population stratification, typically
considered a confounding factor in GWAS, can also be
leveraged to improve the accuracy of PRS estimation.
Polygenic risk scores can be applied to estimate an
individual's disease susceptibility based on genotyping
technologies. However, PRS cannot provide deterministic
predictions for complex common diseases, as genetic
factors only account for a portion of disease risk, and PRS
captures only a subset of the total genetic contribution.
Nevertheless, similar to how clinical medicine utilizes a
wide range of probabilistic indicators, PRS plays a
meaningful role as part of multivariable prediction
algorithms.

3. PROPOSED METHOD

Although PRS is derived from large-scale genomic
studies, the complexity of polygenic traits combined with
environmental influences poses significant challenges for
its widespread diagnostic application. To enhance the
clinical utility of PRS, this study proposes an alternative
approach: employing a Fuzzy Min-Max Neural Network
(FMNN) to reduce the dimensionality of the SNP set.

FMNN is an incremental learning neural network
model that partitions the data space using fuzzy
hyperboxes (fHBs). It inherits the advantages of
reinforcement learning methods and is capable of
handling large-scale datasets efficiently. By leveraging
the flexibility and generalization ability of fuzzy logic,
FMNN offers a promising framework for feature selection
and classification in high-dimensional genetic data.

3.1. Fuzzy hyperbox-fuzzy membership degree

A fuzzy hyperbox B; is a region in the n-dimensional
sample space, defined by its minimum point V; and
maximum point W;. The membership degree b; of a data
point to the hyperbox is defined as in Equation (2):

A
B; = {An, V;, W;, b} (2)
.,am) €EIN(h=1,2,...,m)isthe
training instance indexed by h; bfh is the membership

where: An = (an1, anz, . .

function, the membership degree b; of the training
sample A, to the fuzzy hyperbox B; is computed
according to Equation (3):
b#h 21 N [1—f(ap; — wji,v)
i = n 5 hi jiirY 3)
i=
— f(vji — ani,Y)]
where: y is the sensitivity parameter, used to reduce
the membership value b; when the training sample A lies
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outside the fuzzy hyperbox, is computed according to
Equation (4):

1, xy > 1
fxy) =4{xy, 0=<xy<l1 (4)
0, xy <0

3.2. Learning algorithm

The learning algorithm consists of expansion and
contraction steps to iteratively adjust fuzzy hyperboxes
within the sample space.

Let the training set D contain m data samples, with A
denoting the h®" training instance. The learning
procedure in FMNN includes the following three main
steps:

- Initialization of fuzzy hyperboxes
- Creation and expansion of fuzzy hyperboxes
- Overlap checking and contraction adjustment

Steps 2 and 3 are repeated for each sample in the
training set until cluster stability is achieved. Stability is
defined as the condition in which all minimum and
maximum points of the hyperboxes remain unchanged
across two consecutive iterations in the same order.

4. EXPERIMENTS AND EVALUATION
4.1. Experimental dataset

The Autism GWAS SNP dataset [31], related to autism
spectrum disorder, contains genome-wide genetic
information, including chromosomal positions and minor
allele frequencies (MAF). The genotypic dataset consists
of 399,147 rows (SNP genotypes) and 8 columns (see
Table 1).

In addition, the phenotypic and pedigree data -
including family structure and disease status - are
provided separately (see Table 2).

Table 1. Structure of the GWAS dataset

Attribute Description

CHR Chromosome number indicating where the SNP is located
SNP Identifier or name of the SNP

BP Exact base-pair position of the SNP on the chromosome
oM Genetic distance (in centiMorgans) between markers on the
chromosome
A1 Reference (major) allele
A2 Alternative (minor or variant) allele
MAE Minor Allele Frequency - frequency of the less common
allele in the population
NCHROBS | Number of chromosomes observed at the SNP locus
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Table 2. Structure of Pedigree and Phenotype data

Attribute Description
FID Family ID - a unique identifier for each family
D Individual ID - a unique identifier for each individual within

the family
FAT Paternal ID - unique ID of the individual's father
MAT

Sex Sex - encoded as 1 for male, 2 for female

Maternal ID - unique ID of the individual's mother

Phenotype | Disease status - encoded as 1 for affected, 2 for unaffected

4.2, Data preprocessing with XGBoost

| Genetic data processing

| GWAS preprocessmg I

4

GWAS is QC Is GWAS QC?

> Yes
Is data on a No
condition?
Has QC data
normalized?
Data for PRS processing and
models

Figure 1. Data quality control pipeline using XGBoost

Run analysis GWAS
on conditions

Select features
with XGBoost

The predictive performance of Polygenic Risk Scores
(PRS) heavily depends on the quality of both the base
(discovery) and target datasets. GWAS data must
undergo thorough quality control to eliminate technical
biases and low-quality variants. In this study, we applied
XGBoost as a preprocessing tool to optimize the input
feature set (see Figure 1).

Quality control was conducted based on several key
criteria:

- Genotyping rate > 0.9, to retain SNPs with sufficient
call rates,

- Sample missingness < 0.01, to exclude individuals
with excessive missing data,

- Hardy-Weinberg equilibrium (HWE) with P > 109, to
ensure population genetic balance,
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- Elimination of highly correlated SNPs with pairwise
r2> 0.5, to reduce multicollinearity and redundancy in the
feature space.

4.3. Objectives and Evaluation Metrics

The evaluation of model performance is based on the
following metrics:

- Accuracy. The proportion of correctly predicted cases
among all predictions:

A ~ TP + TN o
CCUracy = TP T TN + FP + FN

- Precision. The proportion of true positive predictions
among all positive predictions:
TP

Precision = TP+ TP (6)

- Recall. Recall (Sensitivity): The proportion of true
positive predictions among all actual positive cases:
TP

Recall = TP+—FN (7)

- F1-score. The harmonic mean of precision and recall,
providing a balanced measure of both:

F1 =2 Precision . Recall @)
~ " Precision + Recall

In addition to the aforementioned metrics, the study
also employed the CM (Confusion Matrix) and the ROC
(Receiver Operating Characteristic) curve to evaluate the
performance of the binary classification models.

4.4, Experimental results

The experiments were conducted using two
computing environments. The first consisted of two
personal desktop machines equipped with Intel Core i9-
13900K CPUs, NVIDIA GeForce RTX 4090 GPUs, 64GB
DDR5 RAM (2 x 32GB), 1TB PCle Gen 4.0 NVMe SSDs, and
ASUS ROG Z790-E GAMING WIFI motherboards. These
systems were used to run machine learning models on
the raw GWAS dataset over a period of one week.

The second setup involved a laptop configured with a
12t Gen Intel Core i7-12700H CPU, NVIDIA GeForce RTX

Table 3. Comparison of Model Performance: KNN, XGBoost, and FMNN

3050 GPU, and 32GB RAM. This system was used to
perform data quality control, feature selection, and
model training, with a total processing time of
approximately 15 hours.

ROC Curve - KNN (Tuned)

08

06

True Positive Rate

04

02

— AUC=063
0.0 === Random Guess

0.0 0.2 04 0.6 08 1.0
False Positive Rate

() ROC curve of the KNN model

Confusion Matrix - KNN (Tuned)

True Label

89

0 1
Predicted Label

(b) Confusion matrix of the KNN model
Figure 2. ROC curve and confusion matrix of the KNN model

Table 4 presents a comparison of model performance
before and after data filtering, where 95% of the most
informative SNPs were retained. Feature selection was
used to eliminate low-importance variants, reduce noise,
and focus on the most relevant genetic markers. This led

to improved model performance
across various evaluation metrics.

For the KNN algorithm, all

e Initial results After feature selection (95%) ‘ d af
ode trics i t
Precision | Recall F1 Accuracy | Precision | Recall F1 Accuracy performance .me I"ICS‘II’T\[‘DI’OVG arter
feature selection, indicating that the
KNN 0.4857 | 0.4087 | 0.4454 | 0.4887 | 0.6138 | 0.4009 | 0.4850 | 0.5900 filtering process helped the model
XGBoost 0.5221 0.4667 | 0.4936 0.5073 0.6215 0.5991 | 0.6101 0.6312 focus on the most relevant features.
FMNN | 0.6335 | 0.5708 | 0.5721 | 0.6304 | 0.7276 | 0.7821 | 0.7539 | 0.7589 This reduced the influence of low-value
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or noisy features and led to an overall enhancement in
model accuracy.

XGBoost showed a significant improvement after
feature selection. The filtering process helped the model
avoid overfitting and enhanced its generalization ability
on the test dataset.

ROC Curve - XGBoost

08

True Positive Rate
o
o

=)
Y

02

o — AUC =0.6617
0.0 === Random Guess

00 02 04 06 08 10
False Positive Rate

(a) ROC curve of the XGBoost model

Confusion Matrix - XGBoost (Tuned)

True Label

0 1
Predicted Label

(b) Confusion matrix of the XGBoost model
Figure 3. ROC curve and confusion matrix of the XGBoost model

The FMNN algorithm demonstrated relatively strong
performance from the outset. After feature selection, the
model maintained its advantage, with a slight increase in
evaluation metrics. Since FMNN inherently adjusts its
structure to identify the most relevant regions in the data
space, the feature selection process did not significantly
alter its performance.

The results across all models indicate that the overall
prediction rates were not particularly high, which can be
attributed to the complex nature of autism spectrum
disorder (ASD). Prior studies have shown that
environmental factors contribute approximately 9 - 36%
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to autism risk. These include pre- and perinatal factors
such as advanced parental age, birth complications
involving hypoxia, preterm birth, and maternal obesity.
Additionally, nutritional influences during pregnancy and
exposure to environmental toxins have also been
implicated [30].

Therefore, with a dataset containing only genetic
factors, the models were inherently limited in their ability
to fully capture the risk of autism in the studied
population.

Receiver Operating Characteristic (ROC)
10 —— ROC Curve (AUC = 0.76)

08

o
o

True Positive Rate

04

02

0.0

0.0 0.2 04 06 08 1.0
False Positive Rate

(a) ROC curve of the FMNN model

Confusion Matrix

True Label

Predicted Label

(b) Confusion matrix of the FMNN model
Figure 4. ROC curve and confusion matrix of the FMNN model
5. CONCLUSION

This study proposed a machine learning-based
approach to improve the prediction accuracy of autism
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risk by integrating GWAS data with the FMNN model.
Experimental results on the AGRE dataset demonstrated
that FMNN, when combined with XGBoost for feature
selection, outperformed traditional methods in terms of
both accuracy and F1-score, achieving scores above 75%.
These findings highlight the potential of machine
learning in enhancing risk prediction for complex
polygenic disorders such as autism.

Despite the promising results, there are several
limitations that should be addressed in future work: (i)
The current dataset focuses solely on genetic factors
without considering environmental variables, which play
a crucial role in the development of autism; and (ij) The
sample size and ethnic diversity within the dataset are
limited, affecting the generalizability of the model.

Future directions for this research include: (i)
Expanding the study to incorporate more diverse
datasets that combine both genetic and environmental
factors; (i) Optimizing the FMNN model to reduce
computational time while maintaining high accuracy;
and (iii) Applying the proposed approach to other
complex polygenic diseases, such as diabetes,
cardiovascular disorders, and schizophrenia.
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