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ABSTRACT  

With the advancement of biotechnology, genetic data has become a 
valuable resource for assessing disease risks. GWAS aim to identify SNPs 
associated with complex diseases. However, the predictive power of GWAS 
remains limited due to the complexity of genetic architectures. This study 
proposes a machine learning-based approach to improve disease risk 
prediction, particularly for autism spectrum disorder (ASD). By applying 
feature selection using XGBoost and employing the FMNN model, the study 
enhances the effectiveness of PRS prediction. Experimental results on the 
AGRE autism dataset show that FMMNN outperforms traditional models, 
achieving over 75% in F1-score and accuracy. The findings confirm that 
combining machine learning with GWAS and PRS can effectively identify 
individuals at higher genetic risk of ASD. 

Keywords: Autism, GWAS, SNP, polygenic risk score, fuzzy min-max neural 
network. 
 

1School of Information and Communication Technology, Hanoi university of 
industry, Vietnam 
2VNU University of Science, Vietnam National University, Hanoi, Vietnam 
*Email: hoangvt06012003@fit-haui.edu.vn 
Received: 25/7/2025 
Revised: 20/9/2025 
Accepted: 28/9/2025 

 

1. INTRODUCTION 

Nowadays, scientists can utilize DNA data to predict 
an individual's risk of developing diseases. Except for 
somatic mutations, DNA remains stable throughout a 
person's lifetime. Therefore, genetically associated 
disease risks can be identified as early as birth. This 
highlights the significance of genetic risk assessment in 
preventive medicine. For instance, a 2017 study 
estimated that approximately 72% of women who inherit 
a BRCA1 mutation and around 69% of those with a BRCA2 

mutation are likely to develop cancer before the age of 80 
[1]. Identifying individuals who carry deleterious genetic 
variants enables healthcare providers to offer lifestyle 
modification recommendations or implement preventive 
interventions tailored to their risk level. 

For monogenic disorders, estimating an individual's 
disease risk can often involve simply identifying 
pathogenic variants in a specific gene. Genetic Linkage 
Analysis (GLA) has long been employed to locate disease-
causing genes based on their co-segregation with 
genetic markers on chromosomes. This method has 
proven highly effective in pinpointing mutations 
responsible for certain single-gene disorders, such as 
Huntington’s disease [2, 3] or breast cancer [4]. However, 
linkage analysis has shown limited efficacy in addressing 
complex, polygenic, and common diseases. 

Genome-Wide Association Studies (GWAS) have been 
conducted to identify common single-nucleotide 
polymorphisms (SNPs) with a minor allele frequency 
(MAF) ≥ 1% that are associated with complex traits and 
diseases [5-7]. The increasing feasibility of GWAS has 
been largely driven by the advancement of large-scale 
SNP genotyping technologies at relatively low cost, 
enabling the analysis of datasets containing hundreds of 
millions of SNPs [8, 9]. 

Nevertheless, GWAS remains limited in its ability to 
accurately predict polygenic diseases. Even when using 
SNPs with strong associations to disease traits, the 
predictive performance is often suboptimal [10, 11]. To 
improve prediction accuracy, recent studies have focused 
on selecting informative subsets of SNPs that contribute 
significantly to disease risk. Modern approaches typically 
incorporate both biological and statistical criteria, such as 
filtering out SNPs due to linkage disequilibrium or 
population stratification effects [8, 12-14]. 
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In addition to biologically driven approaches, various 
feature selection techniques have been explored to 
identify informative SNP subsets. These include machine 
learning-based methods [15-17], threshold-based 
filtering strategies [18], feature elimination during model 
training [19-21], and approaches that capture nonlinear 
interactions [22]. Such methods are increasingly 
integrated into polygenic risk score (PRS) models [23], 
which estimate disease risk in a target cohort using GWAS 
summary statistics derived from an independent 
discovery cohort [24, 25]. With the continuous 
improvement in predictive model performance and the 
availability of larger datasets, polygenic risk scores are 
increasingly contributing to efforts in genetic risk 
stratification and hold great potential for widespread 
clinical application.  

This work presents the following key contributions: (i) 
proposing an integrated approach based on FMNN 
(Fuzzy Min-Max Neural Network) and XGBoost for disease 
risk prediction; (ii) enhancing the effectiveness of 
polygenic risk score estimation; and (iii) implementing 
data preprocessing and quality control using XGBoost. 
The remainder of this paper is organized as follows. 
Section 2 presents relevant background knowledge. 
Section 3 provides a detailed description of the proposed 
algorithm. Section 4 outlines the experimental setup and 
results on the Autism GWAS dataset. The final section 
offers discussion and conclusions. 

2. DNA SEQUENCE ASSEMBLY 

2.1. Genomic sequencing and Haplotype 
reconstruction 

The process of genome sequencing involves 
accurately mapping the nucleotide arrangement in a 
DNA strand. It plays a critical role in uncovering gene 
structures and functions, as well as identifying genetic 
variations associated with diseases. As a cornerstone 
technology in modern molecular biology and genetics, 
genome sequencing has enabled significant advances in 
biomedical research and personalized medicine. 

Several sequencing methodologies have been 
developed, including: 

‐ This classical approach to sequencing involves 
incorporating ddNTPs that halt DNA synthesis, resulting 
in length-variable fragments used to infer nucleotide 
order. 

‐ NGS (Next-Generation Sequencing): a high-
throughput technology that enables the parallel 

sequencing of millions of short DNA fragments, 
significantly accelerating data generation and reducing 
cost. 

‐ TGS (Third-Generation Sequencing): a more recent 
approach that allows for real-time sequencing of single 
DNA molecules without the need for amplification, using 
technologies such as nanopore-based sequencing or 
single-molecule real-time (SMRT) sequencing to directly 
observe DNA synthesis.  

The next step following genome sequencing is 
haplotype phasing, which involves determining the 
combination of alleles located in close proximity on the 
same chromosome that are inherited together from a 
single parent. Identifying haplotypes not only provides a 
more accurate representation of an individual’s genetic 
architecture, but also plays a crucial role in studies of 
complex traits and genetic linkage analysis. Haplotype 
information enhances the power of association studies, 
improves imputation accuracy, and offers deeper insights 
into the inheritance patterns of disease-associated 
variants.  

2.2. GWAS  

GWAS are a powerful approach used to screen 
molecular markers across the entire genome in order to 
identify genetic variants associated with a specific 
disease or trait. The typical GWAS design involves 
comparing two groups: a case group (individuals with the 
disease) and a control group (individuals without the 
disease). DNA is extracted from blood samples or buccal 
cells and analyzed using SNP genotyping arrays. These 
platforms scan the genome to detect single-nucleotide 
polymorphisms (SNPs) that occur at significantly higher 
frequencies in the case group. Such SNPs may serve as 
important genetic markers linked to the disease or trait 
under investigation.. 

GWAS data can be categorized into two types of 
access levels: 

‐ Summary statistics: This dataset includes 
aggregated metrics such as p-values, effect sizes (odds 
ratios for binary traits or β coefficients for continuous 
traits), along with SNP identifiers and their genomic 
positions. 

‐ Individual-level data: This dataset contains detailed 
information for each participant, including subject 
identifiers, pedigree structure, sex, phenotypic traits, 
allelic information at each SNP locus, and other relevant 
covariates. 
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2.3. Polygenic risk score 

The Polygenic Risk Score (PRS) is calculated as the 
weighted sum of risk alleles, where the weights are 
derived from effect sizes estimated by GWAS. PRS serves 
as a relative measure that enables clinicians to assess an 
individual’s genetic predisposition to a particular disease. 
In PLINK, the PRS is typically computed according to 
Equation (1): 

PRS� =
∑ S�. G�,�

�
�

P. M�
 (1) 

where: N - the total number of SNPs considered for 
individual j; Si - the effect size of SNP i; Gi,j - the number of 
risk alleles of SNP i observed in individual j; Mj - the total 
number of non-missing SNPs observed in individual j;  
P - the ploidy of the sample. 

A significant proportion of GWAS results to date have 
been derived from datasets with disproportionate 
representation across ethnic groups - approximately 78% 
of participants are of European ancestry, 10% Asian, 2% 
African, 1% Hispanic, and less than 1% from all other 
populations combined [26]. Moreover, polygenic risk 
scores (PRS) have also been shown to capture the 
contribution of polygenic effects to phenotypes that may 
not be detectable through GWAS alone [27, 28]. 

A 2018 study by Amit V. utilized statistical inference on 
genome-wide data to investigate millions of frequent 
genetic variants linked to five widespread health 
conditions: coronary artery disease, atrial fibrillation, type 
2 diabetes, inflammatory bowel disease, and breast 
cancer [29]. In 2019, a large-scale study involving 272 
authors utilized GWAS data on breast cancer, 
representing the largest of its kind to date. The study 
aggregated data from 69 individual studies, comprising 
94,075 case samples and 75,017 control samples. As a 
result, a set of 313 SNPs was identified as optimal for 
polygenic risk score (PRS) calculation, achieving an area 
under the curve (AUC) of 63% with a 95% confidence 
interval.  

In addition to genetic factors, the development of a 
disease may also be influenced by non-genetic factors 
such as environmental exposures, lifestyle, and other 
external variables. Therefore, diseases cannot be fully 
predicted based on genetic information alone. The 
genetic contribution accounts for only a certain 
proportion, typically quantified as heritability (h2), or 

more specifically, SNP-based heritability ( 2
SNPh ). 

Moreover, population stratification, typically 
considered a confounding factor in GWAS, can also be 
leveraged to improve the accuracy of PRS estimation. 
Polygenic risk scores can be applied to estimate an 
individual's disease susceptibility based on genotyping 
technologies. However, PRS cannot provide deterministic 
predictions for complex common diseases, as genetic 
factors only account for a portion of disease risk, and PRS 
captures only a subset of the total genetic contribution. 
Nevertheless, similar to how clinical medicine utilizes a 
wide range of probabilistic indicators, PRS plays a 
meaningful role as part of multivariable prediction 
algorithms. 

3. PROPOSED METHOD 

Although PRS is derived from large-scale genomic 
studies, the complexity of polygenic traits combined with 
environmental influences poses significant challenges for 
its widespread diagnostic application. To enhance the 
clinical utility of PRS, this study proposes an alternative 
approach: employing a Fuzzy Min-Max Neural Network 
(FMNN) to reduce the dimensionality of the SNP set. 

FMNN is an incremental learning neural network 
model that partitions the data space using fuzzy 
hyperboxes (fHBs). It inherits the advantages of 
reinforcement learning methods and is capable of 
handling large-scale datasets efficiently. By leveraging 
the flexibility and generalization ability of fuzzy logic, 
FMNN offers a promising framework for feature selection 
and classification in high-dimensional genetic data. 

3.1. Fuzzy hyperbox-fuzzy membership degree 

A fuzzy hyperbox Bj  is a region in the n-dimensional 
sample space, defined by its minimum point Vj and 
maximum point Wj. The membership degree bj of a data 
point to the hyperbox is defined as in Equation (2): 

B� = �A�, V�, W�, b�
��� (2) 

where: Ah = (ah1, ah2, . . . , ahn) ∈ In, (h = 1, 2, . . . , m) is the 

training instance indexed by h; A
j

hb is the membership 

function, the membership degree bj of the training 
sample Ah to the fuzzy hyperbox Bj is computed 
according to Equation (3): 

b�
�� =

1

n
��1 − f�a�� − w��, γ�

�

���

− f�v�� − a��, γ�� 

(3) 

where: γ is the sensitivity parameter, used to reduce 
the membership value bj when the training sample Ah lies 
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outside the fuzzy hyperbox, is computed according to 
Equation (4): 

f(x, y) = �

1, xy > 1
xy, 0 ≤ xy ≤ 1

0, xy < 0
 (4) 

3.2. Learning algorithm  

The learning algorithm consists of expansion and 
contraction steps to iteratively adjust fuzzy hyperboxes 
within the sample space. 

Let the training set � contain � data samples, with Ah  
denoting the hth training instance. The learning 
procedure in FMNN includes the following three main 
steps: 

‐ Initialization of fuzzy hyperboxes 

‐ Creation and expansion of fuzzy hyperboxes 

‐ Overlap checking and contraction adjustment 

Steps 2 and 3 are repeated for each sample in the 
training set until cluster stability is achieved. Stability is 
defined as the condition in which all minimum and 
maximum points of the hyperboxes remain unchanged 
across two consecutive iterations in the same order. 

4. EXPERIMENTS AND EVALUATION  

4.1. Experimental dataset 

The Autism GWAS SNP dataset [31], related to autism 
spectrum disorder, contains genome-wide genetic 
information, including chromosomal positions and minor 
allele frequencies (MAF). The genotypic dataset consists 
of 399,147 rows (SNP genotypes) and 8 columns (see 
Table 1). 

In addition, the phenotypic and pedigree data - 
including family structure and disease status - are 
provided separately (see Table 2). 

Table 1. Structure of the GWAS dataset 

Attribute Description 

CHR Chromosome number indicating where the SNP is located 

SNP Identifier or name of the SNP 

BP Exact base-pair position of the SNP on the chromosome 

CM 
Genetic distance (in centiMorgans) between markers on the 
chromosome 

A1 Reference (major) allele 

A2 Alternative (minor or variant) allele 

MAF 
Minor Allele Frequency - frequency of the less common 
allele in the population 

NCHROBS Number of chromosomes observed at the SNP locus 

Table 2. Structure of Pedigree and Phenotype data 

Attribute Description 

FID Family ID - a unique identifier for each family 

IID 
Individual ID - a unique identifier for each individual within 
the family 

FAT Paternal ID - unique ID of the individual's father 

MAT Maternal ID - unique ID of the individual's mother 

Sex Sex - encoded as 1 for male, 2 for female 

Phenotype Disease status - encoded as 1 for affected, 2 for unaffected 

4.2. Data preprocessing with XGBoost 

 
Figure 1. Data quality control pipeline using XGBoost 

The predictive performance of Polygenic Risk Scores 
(PRS) heavily depends on the quality of both the base 
(discovery) and target datasets. GWAS data must 
undergo thorough quality control to eliminate technical 
biases and low-quality variants. In this study, we applied 
XGBoost as a preprocessing tool to optimize the input 
feature set (see Figure 1). 

Quality control was conducted based on several key 
criteria: 

‐ Genotyping rate > 0.9, to retain SNPs with sufficient 
call rates, 

‐ Sample missingness < 0.01, to exclude individuals 
with excessive missing data, 

‐ Hardy-Weinberg equilibrium (HWE) with P > 106, to 
ensure population genetic balance, 
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- Elimination of highly correlated SNPs with pairwise  
r2 > 0.5, to reduce multicollinearity and redundancy in the 
feature space. 

4.3. Objectives and Evaluation Metrics 

The evaluation of model performance is based on the 
following metrics: 

- Accuracy. The proportion of correctly predicted cases 
among all predictions: 

Accuracy =
TP + TN

TP + TN + FP + FN
 (5) 

- Precision. The proportion of true positive predictions 
among all positive predictions:  

Precision =
TP

TP + FP
 (6) 

- Recall. Recall (Sensitivity): The proportion of true 
positive predictions among all actual positive cases:  

Recall =
TP

TP + FN
 (7) 

- F1-score. The harmonic mean of precision and recall, 
providing a balanced measure of both:  

F1 = 2.
Precision . Recall

Precision + Recall
 (8) 

In addition to the aforementioned metrics, the study 
also employed the CM (Confusion Matrix) and the ROC 
(Receiver Operating Characteristic) curve to evaluate the 
performance of the binary classification models. 

4.4. Experimental results 

The experiments were conducted using two 
computing environments. The first consisted of two 
personal desktop machines equipped with Intel Core i9-
13900K CPUs, NVIDIA GeForce RTX 4090 GPUs, 64GB 
DDR5 RAM (2 x 32GB), 1TB PCIe Gen 4.0 NVMe SSDs, and 
ASUS ROG Z790-E GAMING WIFI motherboards. These 
systems were used to run machine learning models on 
the raw GWAS dataset over a period of one week. 

The second setup involved a laptop configured with a 
12th Gen Intel Core i7-12700H CPU, NVIDIA GeForce RTX 

3050 GPU, and 32GB RAM. This system was used to 
perform data quality control, feature selection, and 
model training, with a total processing time of 
approximately 15 hours. 

 
(a) ROC curve of the KNN model 

 
(b) Confusion matrix of the KNN model 

Figure 2. ROC curve and confusion matrix of the KNN model 

Table 4 presents a comparison of model performance 
before and after data filtering, where 95% of the most 
informative SNPs were retained. Feature selection was 
used to eliminate low-importance variants, reduce noise, 
and focus on the most relevant genetic markers. This led 

to improved model performance 
across various evaluation metrics. 

For the KNN algorithm, all 
performance metrics improved after 
feature selection, indicating that the 
filtering process helped the model 
focus on the most relevant features. 
This reduced the influence of low-value 

Table 3. Comparison of Model Performance: KNN, XGBoost, and FMNN 

Model 
Initial results After feature selection (95%) 

Precision Recall F1 Accuracy Precision Recall F1 Accuracy 

KNN 0.4857 0.4087 0.4454 0.4887 0.6138 0.4009 0.4850 0.5900 

XGBoost 0.5221 0.4667 0.4936 0.5073 0.6215 0.5991 0.6101 0.6312 

FMNN 0.6335 0.5708 0.5721 0.6304 0.7276 0.7821 0.7539 0.7589 
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or noisy features and led to an overall enhancement in 
model accuracy. 

XGBoost showed a significant improvement after 
feature selection. The filtering process helped the model 
avoid overfitting and enhanced its generalization ability 
on the test dataset. 

 
(a) ROC curve of the XGBoost model 

 
(b) Confusion matrix of the XGBoost model 

Figure 3. ROC curve and confusion matrix of the XGBoost model 

The FMNN algorithm demonstrated relatively strong 
performance from the outset. After feature selection, the 
model maintained its advantage, with a slight increase in 
evaluation metrics. Since FMNN inherently adjusts its 
structure to identify the most relevant regions in the data 
space, the feature selection process did not significantly 
alter its performance. 

The results across all models indicate that the overall 
prediction rates were not particularly high, which can be 
attributed to the complex nature of autism spectrum 
disorder (ASD). Prior studies have shown that 
environmental factors contribute approximately 9 - 36% 

to autism risk. These include pre- and perinatal factors 
such as advanced parental age, birth complications 
involving hypoxia, preterm birth, and maternal obesity. 
Additionally, nutritional influences during pregnancy and 
exposure to environmental toxins have also been 
implicated [30]. 

Therefore, with a dataset containing only genetic 
factors, the models were inherently limited in their ability 
to fully capture the risk of autism in the studied 
population. 

 
(a) ROC curve of the FMNN model 

 
(b) Confusion matrix of the FMNN model 

Figure 4. ROC curve and confusion matrix of the FMNN model 

5. CONCLUSION  

This study proposed a machine learning-based 
approach to improve the prediction accuracy of autism 
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risk by integrating GWAS data with the FMNN model. 
Experimental results on the AGRE dataset demonstrated 
that FMNN, when combined with XGBoost for feature 
selection, outperformed traditional methods in terms of 
both accuracy and F1-score, achieving scores above 75%. 
These findings highlight the potential of machine 
learning in enhancing risk prediction for complex 
polygenic disorders such as autism. 

Despite the promising results, there are several 
limitations that should be addressed in future work: (i) 
The current dataset focuses solely on genetic factors 
without considering environmental variables, which play 
a crucial role in the development of autism; and (ii) The 
sample size and ethnic diversity within the dataset are 
limited, affecting the generalizability of the model. 

Future directions for this research include: (i) 
Expanding the study to incorporate more diverse 
datasets that combine both genetic and environmental 
factors; (ii) Optimizing the FMNN model to reduce 
computational time while maintaining high accuracy; 
and (iii) Applying the proposed approach to other 
complex polygenic diseases, such as diabetes, 
cardiovascular disorders, and schizophrenia. 
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