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ABSTRACT

User-centric cell-free massive MIMO is emerging as a key architecture for
next-generation wireless systems, aiming to enhance faimess and spectral
efficiency by eliminating cell boundaries and leveraging distributed access
points (APs). To fully exploit its advantages in uplink communication, especially
under dense user deployments, effective uplink power control (UPC) is essential
to mitigate inter-user interference while ensuring fair resource allocation. This
paper focuses on distributed optimization for the max-min fairness problem and
compares three metaheuristic-based UPC algorithms: Particle Swarm
Optimization (PSO), Bat Algorithm (BA), and Genetic Algorithm (GA). This
evaluation is based on a composite objective function (F3) that captures both
max-min fairmess and sum spectral efficiency, enabling multi-objective
optimization through a scalarized formulation. Simulation results across varying
network scales demonstrate that PSO achieves the highest minimum spectral
efficiency, reaching 3.1664 bit/s/Hz at the median user (CDF = 0.5), followed
closely by BA (3.1563) and GA (3.1121). Under increasing user loads (from 8 to
15 UEs), PSO and BA maintain higher average minimum SE (down to 2.3441 and
2.3109, respectively), while GA declines more significantly (to 2.2223). In dense
AP scenarios (up to 100 APs), PSO again leads with 4.9947 bit/s/Hz. Regarding
convergence, PSO and BA reach near-optimal solutions rapidly, whereas GA
converges more slowly and requires approximately 1.8 times the computation
time. These findings position swarm-based methods as highly effective for real-
time, fairness-oriented uplink power control in distributed cell-free massive
MIMO systems.
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max-min fairness; Metaheuristic algorithm.
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ABBREVIATIONS
AP Access Point
PSO Particle Swarm Optimization
BA Bat Algorithm
GA Genetic Algorithm
UC-CFmMMIMO  User Centric Cell- Free Massive

Multiple-Input Multiple-Output
SE Spectral Efficiency
UE User Equipment
UPC Uplink Power Control
1. INTRODUCTION
The surge in demand for ultra-reliable, high-

throughput, and low-latency communication is propelling
the development of next-generation wireless networks.
User-Centric Cell-Free Massive MIMO (UC-CFmMIMO) has
emerged as a groundbreaking architecture capable of
meeting these stringent requirements by eliminating
conventional cell boundaries and enabling multiple
distributed access points (APs) to collaboratively serve
users. This architecture holds the potential to significantly
enhance spectral efficiency (SE), user fairness, and total
network capacity, particularly in densely populated
scenarios [1-4].

A pivotal aspect of UC-CFmMIMO systems is uplink
power control (UPC), which governs how user devices
allocate their transmission power while sharing the
wireless spectrum. The complexity of this task stems from
the need to simultaneously enhance system-wide
performance and promote equitable access across users.
Traditionally, this challenge has been cast as a max-min
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fairness optimization problem, but such formulations
often overlook the benefits of maximizing the overall
spectral efficiency.

To bridge this gap, we redefine the optimization
objective to incorporate a hybrid metric that combines
max-min fairness SE with sum SE, thereby striking a
practical balance between fairness and throughput. This
composite objective enables more flexible trade-offs in
diverse deployment scenarios and better reflects the dual
goals of modern wireless systems [2, 5-9]. This
formulation represents a multi-objective optimization
approach that enables the system to jointly address
fairness and throughput within a single scalarized
function. As such, comparing different algorithms under
this unified objective provides practical insight into their
effectiveness in managing fairness-throughput trade-offs
in real-world deployments.

Conventional UPC techniques - such as full power
transmission, fractional power control, and fixed-point
iterations targeting minimum SINR maximization - offer
limited adaptability and may exhibit poor scalability or
performance in large-scale heterogeneous environments
[10-14]. Although metaheuristic algorithms are
increasingly explored for wireless optimization, a
systematic evaluation of their efficacy in addressing the
trade-off between fairness and throughput in UC-
CFMMIMO remains limited. Although some existing
works examine fairness or system capacity
independently, a joint formulation that reflects both
objectives - evaluated through fairness-centric indicators
such as minimum SE under a composite function - is still
lacking. This limits informed algorithm selection for
practical deployment settings [9, 15-171.

In this context, we explore the use of three well-
known metaheuristic algorithms - Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), and Bat
Algorithm (BA) - to solve the uplink power control
problem using our newly proposed composite objective
function. These nature-inspired techniques are well-
suited for navigating the high-dimensional, non-convex
optimization landscape that typifies UC-CFmMIMO
systems.

Our key contribution lies in a comparative analysis of
PSO, GA, and BA when optimizing the fairness-
throughput trade-off. We assess each algorithm based
primarily on minimum spectral efficiency resulting from
the composite fairness-throughput objective, along with
convergence behavior and computational complexity.
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This focus allows us to evaluate how well each method
balances equity and efficiency within a unified
framework.

The rest of the paper is structured as follows: Section
2 outlines the UC-CFmMIMO network model. Section 3
defines the uplink power control optimization problem.
Section 4 details the metaheuristic algorithms used - PSO,
GA, and BA. Section 5 covers the simulation results and
performance evaluation. Section 6 wraps up the paper
and suggests directions for future work.

2.SYSTEM MODEL

We examine a UC-CF mMIMO network composed of K
single-antenna user equipments (UEs) and L access
points (APs), each equipped with N antennas. The
channel between AP | and UE k in any given coherence
block is represented by h,, e C". The channel is modeled

using block fading, where hy is assumed to remain
constant over time and flat in frequency within a
coherence block of 1. symbols under a TDD protocol. The
coherence interval 1 is divided into T, pilot symbols for

uplink channel estimation (producing |:Ik| ), Tu symbols for

uplink data, and t4 symbols for downlink data [2, 19, 20];
uplink data symbols, and 1. downlink data symbols.
Within each block, channels are modeled independently
and follow a correlated Rayleigh fading distribution
h, ~ N.(0,.R,) while R,eC™ is the spatial

correlation matrix between AP | and UE k. The Gaussian
distribution captures small-scale fading, while the
positive semi-definite correlation matrix Rk accounts for
large-scale fading, including geometric path loss,
shadowing, antenna gains, and spatial channel
correlation [4, 8].

The uplink transmit powers are represented as a
vector p=[p1,...,pK]T, which affects the entire network.

The uplink SE for a given UE k is determined by its SINR,
which depend on p. Specifically, the SINR numerator is
influenced by the desired UE's transmit power px while
the denominator includes interference from all UEs’
power levels in p. The effective SINR for UE k, applicable
to centralized uplink operations, is expressed in a
generalized form as [4, 81:

b.p
SINR, (p) =—<Px_
(P) cp+o; W
where:
b, =[E{viD,h, ][ vk, 2)
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H 2
Kk :E{|kakhk| }_bk vk, 3)
. :E{|v':thi|2}—bk vk, Vizk, @)
o} = ozE{”Dkvk"z}. (5)

with vk:[v:“m,vIL]Te(C"N is combining vector
centralized at the CPU. h :i={,...

vectors from all K UEs. D,

K} is the channel

=diag{D,,,---,D, }os is a block-
diagonal matrix. As the result, the uplink SE of UE k

depends on p and it is given by [2]:

SE, (p) = *Iog; (1+SINR, (p)) ©)

C

3. PROBLEM FORMULATION

UPC involves selecting suitable transmit power levels
for the UEs to optimize a specific utility function, most
commonly tied to SE. In this work, we focus on two main
power control objectives: maximizing the total SE and
ensuring fairness through max-min SE optimization.

The goal of max-min SE fairness is to improve equity
by maximizing the minimum SE across all UEs, ensuring
that the UE with the worst performance is still adequately
served. This approach, known as max-min fairness, ad-
justs the transmit power allocations to balance perfor-
mance among users. The corresponding optimization
problem is defined mathematically as follows:

(P1): m;ax ker{rs'l‘ij}SEk(p) -

st. 0<p, <p,.., k=1...K

While max-min SE fairness prioritizes fairness for UEs
with poor channel conditions, it may not fully exploit the
potential for higher spectral efficiencies in large
networks. In contrast, the sum SE maximization problem
focuses on maximizing the total number of transmitted
bits, irrespective of their distribution among UEs. This
approach is particularly suitable for scenarios where each
UE only interferes with a small subset of neighboring UEs.
The sum SE maximization problem can be described by:

K
P2): SE
(P2): max ; «(p) @

st. 0<p <Pna k=1....K

To overcome the trade-off between fairness and
throughput posed by the individual objectivesin (P1) and
(P2), we introduce a joint optimization problem that
simultaneously considers both the minimum and the
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total SE across users. This hybrid objective, denoted as
(P3), aims to strike a balance between improving the SE
of the weakest user and maximizing overall system
throughput. The problem is formulated as:

(P3): max { min, SE, ( ZSE }

st. 0<p, <p,.., k=1...K

4. UPLINK POWER CONTROL SCHEMES
4.1. Genetic Algorithm

The Genetic Algorithm (GA) is a population-based
metaheuristic inspired by the principles of Darwinian
natural selection. Candidate solutions are encoded as
fixed-length binary or real-valued chromosomes, which
evolve over successive generations to approximate
optimal outcomes. The standard GA framework consists
of (1) encoding the objective or cost function, (2) defining
a fitness function to quantify solution quality, (3)
initializing a population of individuals, and (4) iteratively
applying genetic operators - selection, crossover, and
mutation - to generate new generations of solutions.

Selection mechanisms prioritize individuals with
higher fitness, promoting convergence toward optimal
regions. Crossover recombines genetic material from
parent chromosomes, typically via single-point or multi-
point crossover, producing offspring that inherit traits
from both parents. Mutation introduces stochastic
variation by randomly altering genes (e.g., bit-flipping),
helping maintain genetic diversity and prevent
premature convergence. This evolutionary process,
driven by fitness-based reproduction, enables GA to
effectively explore and exploit complex search spaces.

Strengths: GA is gradient-free and highly adaptable,
making it well-suited for solving discrete, nonlinear, and
multi-modal optimization problems. Its population-
based structure facilitates broad exploration of the search
space.

Limitations: GA may converge slowly and is sensitive
to the configuration of key parameters such as crossover
and mutation rates. Its effectiveness also depends heavily
on the choice of encoding scheme and fitness function
design.

4.2, Particle Swarm Optimization

PSO is a stochastic, population-based optimization
technique inspired by the collective behavior observed in
bird flocks and fish schools. In this framework, each
particle represents a potential solution and navigates the
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search space by updating its position and velocity based
on two components: its own best-known position
(personal experience) and the global best position
discovered by the swarm. This cooperative information-
sharing mechanism enables particles to balance
exploration and exploitation as they converge toward
optimal or near-optimal solution.

At each iteration t, the velocity vi and position x; of
particle i are updated as:

V(t+)=w, )+ (B =X (1) +C1 (9 (1) (10)

(1)

where w is the inertia weight; ¢, c; are cognitive and

X (t+1)=x,(t)+v,(t+1)

social acceleration coefficients; r,,r, ~U(0,1), piis the best

previous position of particle i, and g is the global best
position in the swarm.

Strength: PSO offers rapid convergence,
straightforward implementation, and requires minimal
parameter tuning. It is particularly effective in solving
continuous, high-dimensional optimization problems.

Limitations: Despite its simplicity, PSO is prone to
premature convergence and may stagnate in complex
multimodal search spaces, especially when swarm
diversity is not adequately preserved.

4.3. Bat Algorithm

The BA is a bio-inspired optimization technique that
mimics the echolocation mechanism of microbats. In
nature, bats emit ultrasonic pulses and interpret the
returning echoes to estimate the location of prey,
subsequently adjusting their movement accordingly.
This natural behavior is modeled computationally using a
population of virtual bats, where each individual
represents a candidate solution navigating the search
space.

At each iteration t, bat i updates its frequency,
velocity, and position as follows:

fi :fmin +<fmax _fmin)'B' BNU(O’1) (12)

vt =yl +(x§” —x*)-fi (13)
XFV = x® 7 (14)
where:

o fiis the frequency for bat i
e X;, v; are the position and velocity of bat iii

e X" is the current global best solution
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e B is ais arandom number controlling exploration in
[0,1].

For local exploitation, a new solution is generated
near the best current solution using:

Xnew = Xold +0- 6t : A(t)l Et ~ N(011) (1 5)

where A(t) is the current average loudness and o is a
scaling factor.

Additionally, bats adjust their loudness A; and pulse
emission rate r; over time:

A =aA?, 1 =9 [1-exp(-yt)]

where ae(0,1) controls loudness decay and y > 0
adjusts pulse rate growth.

The BA combines global exploration through
frequency-tuned motion with local exploitation guided
by adaptive pulse loudness and emission rates. This
hybrid mechanism allows BA to handle complex,
multimodal, and nonlinear optimization tasks effectively.
However, its performance is notably influenced by the
choice of algorithmic parameters, and it lacks rigorous
theoretical convergence guarantees.

(16)

Strength: BA offers a balanced approach between
global search and local refinement by leveraging
frequency modulation and adaptive loudness dynamics,
making it effective for diverse optimization landscapes.

Limitations: The algorithm is highly sensitive to
parameter tuning, and in contrast to more mature
methods, it does not benefit from well-established
theoretical convergence frameworks.

5. NUMERICAL RESULTS
5.1. Simulation Setup

To assess the performance of the proposed UPC
algorithms in a UC-CFmMIMO environment, we simulate
a network deployed over a Tkm x Tkm area comprising
50 randomly distributed access points (APs) and 10
randomly placed user equipments (UEs). Each AP is
equipped with a single antenna, resulting in a total of 100
antennas across the system. To ensure statistical
reliability, the simulation includes 500 distinct network
topologies, with 50 random realizations for each
topology.

The system operates within a 20MHz bandwidth, with
receiver noise incorporating both thermal noise and a 7
dB noise figure. Each UE is subject to a practical maximum
uplink power pmax = 100mW. Channel coherence is
characterized by a 2ms coherence time and 100kHz
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coherence bandwidth, suitable for sub-6 GHz scenarios
involving both indoor and outdoor mobility. Large-scale
fading follows the 3GPP Urban Microcell path loss model,
while small-scale Rayleigh fading incorporates spatial
correlation using a local scattering model.

For the metaheuristic algorithms, PSO and BA are
executed with a population size of 300 particles or bats
and a maximum of 100 iterations. The GA algorithm is
configured with a population of 300 individuals evolved
over 100 generations. For each simulation setup, the
minimum spectral efficiency is calculated and averaged
over all realizations to evaluate both user fairness and the
overall effectiveness of each algorithm.

5.2. Performance Metrics

The key performance indicator in this study is the
minimum SE among all UEs, measured in bit/s/Hz. This
metric serves as a direct indicator of fairness, as it
captures the performance of the worst-case user under a
given power control strategy. Maximizing this value -
aligned with the max-min fairness principle - is
particularly important in cell-free massive MIMO systems,
where consistent service quality and user-centric
coverage are prioritized. However, in this study, the
minimum SE is not optimized in isolation. It is derived
from a composite objective function (F3) that combines
both max-min fairness and sum SE. This scalarized
formulation enables simultaneous evaluation of fairness
and throughput performance, aligning with the multi-
objective nature of practical deployments. To evaluate
algorithmic performance under realistic network
conditions, the minimum SE is computed over multiple
independent network topologies and averaged across all
realizations. The statistical distribution of minimum SE
values is further visualized through cumulative
distribution function (CDF) plots, offering a deeper
understanding of both average and edge-case user
experiences. In addition to communication performance,
computational complexity is considered as a secondary
metric to assess the practical applicability of each
optimization method. While GA relies on computationally
intensive evolutionary processes, PSO and BA utilize
simpler, arithmetic-driven update rules. This leads to
distinct differences in execution time, which are
quantified through average runtime per simulation
setup. Evaluating these trade-offs between fairness and
computational efficiency provides a well-rounded
assessment of each algorithm’s suitability for large-scale,
real-time UC-CFmMIMO deployments.
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5.3. Key Findings
5.3.1. Computational Time

This section compares the computational efficiency of
the FPA and the FPC method in determining the optimal
transmit powers under varying network scales. Tables 1
and 2 present the average execution time (in
milliseconds) for each method when changing the
number of users (K) and APs (L), respectively. All
simulations were conducted using MATLAB R2021b on an
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, providing a
consistent computational environment for performance
comparison.

Table 1 summarizes the average computation time of
the evaluated algorithms. PSO exhibits the fastest
performance, completing its run in 289.73 milliseconds,
followed closely by BA at 298.45 milliseconds. In
comparison, GA incurs a notably higher computational
overhead, taking 532.08 milliseconds - approximately 1.8
times longer than PSO. These findings underscore the
computational efficiency of swarm intelligence
approaches (PSO and BA), which outperform the more
resource-intensive evolutionary strategy used by GA.

Table 1. Average computational time (in milliseconds) for BA, GA and PSO
with fixed L =10 and K = 50

Algorithm BA GA PSO
298.45 | 532.08 | 289.73

Computation time (miliseconds)

5.3.2. Fitness Convergence Performance of PSO, BA,
and GA

When examining the convergence behavior, as
illustrated in Figure 1, all three algorithms demonstrate
effective performance, yet differ in their convergence
speed and stability. PSO reaches a fitness value of 0.9999
within only 3 iterations and achieves perfect fitness (1.0)
at iteration 20, showcasing exceptionally fast and stable
convergence.

BA performs comparably well, attaining a fitness value
above 0.9999 as early as iteration 2 and reaching 1.0 by
iteration 21. Its curve closely mirrors PSO’s after the early
iterations, suggesting similar optimization efficiency with
only a marginal delay.

In contrast, GA exhibits a more gradual convergence
trajectory. It begins with a lower initial fitness of 0.92597,
and despite improving steadily, it only reaches 0.98624
after 25 iterations and does not converge to 1.0 within the
first 100 iterations. This reflects a slower rate of fitness
improvement, indicating GA’s reliance on more
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incremental evolutionary progress and potential

sensitivity to local optima.

Overall, PSO clearly leads in convergence speed,
followed closely by BA, while GA lags significantly behind.
These findings suggest that swarm-based algorithms
(PSO and BA) are more suitable for real-time or large-scale
deployments, where rapid convergence is crucial.

[

0.98

0.96

Normalized Fitness Function

0.94 GA
BA
—a4— PS5O

0.92

0 10 20 30 40 5 60 70 8 80 100
Iteration

Figure 1. Normalized fitness convergence curves for PSO, BA, and GA
5.3.3. Effectiveness of the Schemes

To evaluate how different metaheuristic algorithms
handle the trade-off between user fairness and overall
system efficiency, we adopt a composite utility function
(F3) that jointly accounts for both max-min fairness and
throughput considerations. Rather than assessing sum
spectral efficiency directly, we focus on the minimum SE
obtained after optimizing F3. This approach enables a
fairness-centered evaluation while implicitly reflecting
system-wide performance through the structure of the
objective function.

As shown in Figure 1, all three algorithms - GA, PSO,
and BA - demonstrate comparable results in terms of
fairness. At the median point (CDF = 0.5), GA achieves the
highest minium SE at 2.8521 bit/s/Hz, slightly ahead of
PSO (2.8217) and BA (2.8210). Despite the narrow
margins, this suggests that GA is marginally more
effective in navigating the fairness-throughput balance
embedded in the F3 formulation.

At CDF = 0.1 - representing worst-case user scenarios
- GA again leads with 2.1355 bit/s/Hz, followed by PSO
(2.1196) and BA (2.1186). This consistent performance
across both typical and adverse conditions confirms GA's
slight advantage under fairness-driven optimization.
While all algorithms optimize the same composite
objective, their performance reflects different multi-
objective behaviors. GA tends to prioritize fairness more

Vol. 61 - No. 9E (Sep 2025)

effectively, consistently achieving higher minimum SE
values across various CDF levels. In contrast, PSO
demonstrates better throughput scalability in large-scale
AP deployments. BA offers consistent performance,
indicating its robustness in balancing fairness and
efficiency.

In summary, although the differences are small, all
three algorithms perform robustly when optimizing the
F3 objective. The results validate their ability to support
fairness under practical constraints, with GA maintaining
a modest but consistent edge in minimum SE across the
distribution.

1.0 B.: /
08 _—-—SSO //
0.6 /

- /

0.4 4 /
0.2 4 ”f

0.0

Min SE [bit/s/Hz]
Figure 2. Comparison of UPC schemes in term of minium SE
5.3.4. Impact of Number of APs and UEs

This section evaluates the effect of increasing the
number of APs and UEs on system performance, focusing
on average minimum SE, which is crucial for assessing
user fairness and network coverage in dense
deployments.

Figure 3 reveal that increasing the number of APs
consistently improves the minimum SE across all
metaheuristic schemes - BA, GA and (PSO). At 30 APs, the
average minimum SE remains below 1.63 bit/s/Hz for all
methods, indicating limited coverage and strong inter-
user interference in sparse deployments. Among them,
GA achieves the highest value of 1.62534 bit/s/Hz, slightly
outperforming BA (1.60819) and PSO (1.60796). As the
number of APs increases to 50, a significant jump in
performance is observed, with all algorithms exceeding
2.84 bit/s/Hz. The trend stabilizes between 50 and 70 APs,
where average minimum SE shows minimal variation,
suggesting a temporary saturation region. At 100 APs, all
three algorithms show a marked improvement,
exceeding 4.72 bit/s/Hz. GA again leads with the highest
performance of 4.76075 bit/s/Hz, followed closely by BA
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(4.72332) and PSO (4.72317). These results confirm that
denser AP deployments significantly enhance user
fairness, particularly benefiting users at the network edge
by reducing path loss and improving signal reliability.

Figure 4 illustrates the impact of increasing the
number of users on the average minimum SE for the BA,
GA, and PSO algorithms. As the number of users grows
from 8 to 15, all three schemes experience a consistent
decline in minimum SE due to increased inter-user
interference and more constrained power allocation. At 8
users, GA achieves the highest minimum SE of 3.14486
bit/s/Hz, slightly outperforming BA (3.12467) and PSO
(3.12466). As user count increases to 10 and 12, GA
continues to lead marginally, with minimum SE values of
2.86939 and 2.54829 bit/s/Hz, respectively. BA and PSO
follow closely, showing near-identical performance
across all user densities. At 15 users, the performance gap
remains narrow, with all three methods converging to
around 2.08 bit/s/Hz. GA again slightly outperforms the
others at 2.0823 bit/s/Hz, followed by PSO (2.08494) and
BA (2.08651). These trends indicate that while increasing
the number of users degrades minimum SE, all
metaheuristic schemes maintain stable and comparable
performance under heavier user loads.

BA
5 GA
—t— PSO
N
=
m
172]
g
=
% 31
s
g
<
2
T T T T T T
30 40 50 60 70 80 90 100

Number of APs

Figure 3. Average minium SE versus number of APs
4

BA
GA
——PSO

\\

~—
—

Average Min SE [bit/s/Hz]
w

T T T T T T
8 9 10 11 12 13 14 15
Number of Users

Figure 4. Average minium SE versus number of Ues
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In summary, increasing the number of APs improves
minimum SE across all algorithms, with GA consistently
achieving the highest values. As the number of users
increases, minimum SE declines for all methods, though
GA maintains a slight advantage. Overall, all three
metaheuristic algorithms exhibit stable and comparable
performance across varying network conditions.

6. CONCLUSION

This work presents a comprehensive evaluation of
three metaheuristic-based uplink power control (UPC)
strategies - PSO, BA and GA - within the context of user-
centric cell-free massive MIMO (UC-CFmMIMO) systems.
By adopting a hybrid utility function that balances max-
min fairness and throughput (F3), this study provides
valuable insights into the trade-offs between fairness,
scalability, and computational efficiency.

Our findings reveal that GA consistently delivers the
highest fairness, achieving a minimum spectral efficiency
(SE) of 2.8521 bit/s/Hz at the median user (CDF = 0.5), and
2.1355 bit/s/Hz under worst-case conditions (CDF = 0.1).
However, GA’s performance declines more significantly
as user load increases, with minimum SE dropping to
2.2223 bit/s/Hz at 15 UEs. In contrast, PSO demonstrates
superior scalability, achieving the highest minimum SE of
4.9947 bit/s/Hz at 100 APs, and maintaining strong
performance under heavier user loads (2.3441 bit/s/Hz at
15 UEs). BA performs comparably across all scenarios,
with slight deviations from PSO.

In terms of computational efficiency, PSO is the
fastest, requiring only 289.73ms, closely followed by BA
(298.45ms), while GA lags behind at 532.08ms, nearly
1.8%x slower. These results indicate that swarm-based
algorithms (PSO and BA) are highly suitable for real-time
and large-scale deployments, whereas GA may be
preferred in fairness-critical systems with moderate user
density. Although each algorithm is evaluated under the
same fairness-throughput objective (F3), their
optimization tendencies diverge. GA proves more
effective for fairness-oriented goals, making it suitable for
service-equality-critical scenarios. PSO, by contrast, offers
superior scalability and runtime efficiency, positioning it
as a strong candidate for systems emphasizing both
performance and responsiveness. BA maintains steady
behavior across all scenarios, making it a balanced and
reliable option in general-purpose settings.

In summary, GA is well-suited for fairness-oriented
designs, PSO offers the best balance between speed and
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scalability, and BA serves as a reliable middle ground with
consistent results. This work offers practical guidance for
selecting UPC strategies in next-generation wireless
networks.

Future research directions include extending this
framework to optimize the trade-off parameter A
adaptively, incorporating realistic constraints such as
imperfect CSI and latency, and exploring downlink
scenarios involving beamforming, precoding, and joint
user scheduling. Additionally, the integration of energy-
efficiency models and hardware impairments would
further bridge the gap between theory and practical
deployment.
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