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ABSTRACT 

User-centric cell-free massive MIMO is emerging as a key architecture for 
next-generation wireless systems, aiming to enhance fairness and spectral 
efficiency by eliminating cell boundaries and leveraging distributed access 
points (APs). To fully exploit its advantages in uplink communication, especially 
under dense user deployments, effective uplink power control (UPC) is essential 
to mitigate inter-user interference while ensuring fair resource allocation. This 
paper focuses on distributed optimization for the max-min fairness problem and 
compares three metaheuristic-based UPC algorithms: Particle Swarm 
Optimization (PSO), Bat Algorithm (BA), and Genetic Algorithm (GA). This 
evaluation is based on a composite objective function (F3) that captures both 
max-min fairness and sum spectral efficiency, enabling multi-objective 
optimization through a scalarized formulation. Simulation results across varying 
network scales demonstrate that PSO achieves the highest minimum spectral 
efficiency, reaching 3.1664 bit/s/Hz at the median user (CDF = 0.5), followed 
closely by BA (3.1563) and GA (3.1121). Under increasing user loads (from 8 to 
15 UEs), PSO and BA maintain higher average minimum SE (down to 2.3441 and 
2.3109, respectively), while GA declines more significantly (to 2.2223). In dense 
AP scenarios (up to 100 APs), PSO again leads with 4.9947 bit/s/Hz. Regarding 
convergence, PSO and BA reach near-optimal solutions rapidly, whereas GA 
converges more slowly and requires approximately 1.8 times the computation 
time. These findings position swarm-based methods as highly effective for real-
time, fairness-oriented uplink power control in distributed cell-free massive 
MIMO systems. 
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1. INTRODUCTION 

The surge in demand for ultra-reliable, high-
throughput, and low-latency communication is propelling 
the development of next-generation wireless networks. 
User-Centric Cell-Free Massive MIMO (UC-CFmMIMO) has 
emerged as a groundbreaking architecture capable of 
meeting these stringent requirements by eliminating 
conventional cell boundaries and enabling multiple 
distributed access points (APs) to collaboratively serve 
users. This architecture holds the potential to significantly 
enhance spectral efficiency (SE), user fairness, and total 
network capacity, particularly in densely populated 
scenarios [1-4]. 

A pivotal aspect of UC-CFmMIMO systems is uplink 
power control (UPC), which governs how user devices 
allocate their transmission power while sharing the 
wireless spectrum. The complexity of this task stems from 
the need to simultaneously enhance system-wide 
performance and promote equitable access across users. 
Traditionally, this challenge has been cast as a max-min 
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fairness optimization problem, but such formulations 
often overlook the benefits of maximizing the overall 
spectral efficiency. 

To bridge this gap, we redefine the optimization 
objective to incorporate a hybrid metric that combines 
max–min fairness SE with sum SE, thereby striking a 
practical balance between fairness and throughput. This 
composite objective enables more flexible trade-offs in 
diverse deployment scenarios and better reflects the dual 
goals of modern wireless systems [2, 5-9]. This 
formulation represents a multi-objective optimization 
approach that enables the system to jointly address 
fairness and throughput within a single scalarized 
function. As such, comparing different algorithms under 
this unified objective provides practical insight into their 
effectiveness in managing fairness-throughput trade-offs 
in real-world deployments. 

 Conventional UPC techniques - such as full power 
transmission, fractional power control, and fixed-point 
iterations targeting minimum SINR maximization - offer 
limited adaptability and may exhibit poor scalability or 
performance in large-scale heterogeneous environments 
[10-14]. Although metaheuristic algorithms are 
increasingly explored for wireless optimization, a 
systematic evaluation of their efficacy in addressing the 
trade-off between fairness and throughput in UC-
CFmMIMO remains limited. Although some existing 
works examine fairness or system capacity 
independently, a joint formulation that reflects both 
objectives - evaluated through fairness-centric indicators 
such as minimum SE under a composite function - is still 
lacking. This limits informed algorithm selection for 
practical deployment settings [9, 15-17]. 

In this context, we explore the use of three well-
known metaheuristic algorithms - Particle Swarm 
Optimization (PSO), Genetic Algorithm (GA), and Bat 
Algorithm (BA) - to solve the uplink power control 
problem using our newly proposed composite objective 
function. These nature-inspired techniques are well-
suited for navigating the high-dimensional, non-convex 
optimization landscape that typifies UC-CFmMIMO 
systems. 

Our key contribution lies in a comparative analysis of 
PSO, GA, and BA when optimizing the fairness-
throughput trade-off. We assess each algorithm based 
primarily on minimum spectral efficiency resulting from 
the composite fairness-throughput objective, along with 
convergence behavior and computational complexity. 

This focus allows us to evaluate how well each method 
balances equity and efficiency within a unified 
framework. 

The rest of the paper is structured as follows: Section 
2 outlines the UC-CFmMIMO network model. Section 3 
defines the uplink power control optimization problem. 
Section 4 details the metaheuristic algorithms used - PSO, 
GA, and BA. Section 5 covers the simulation results and 
performance evaluation. Section 6 wraps up the paper 
and suggests directions for future work. 

2. SYSTEM MODEL 

We examine a UC-CF mMIMO  network composed of K 
single-antenna user equipments (UEs) and L access 
points (APs), each equipped with N antennas. The 
channel between AP l and UE k in any given coherence 
block is represented by N

kl h  . The channel is modeled 

using block fading, where hkl is assumed to remain 
constant over time and flat in frequency within a 
coherence block of τc symbols under a TDD protocol. The 
coherence interval τc is divided into τp pilot symbols for 

uplink channel estimation (producing klĥ ), τu symbols for 

uplink data, and τd symbols for downlink data [2, 19, 20]; 
uplink data symbols, and τc downlink data symbols. 
Within each block, channels are modeled independently 
and follow a correlated Rayleigh fading distribution 

 kl N kl,h 0 R  ,while N N
kl

R   is the spatial 

correlation matrix  between AP l and UE k. The Gaussian 
distribution captures small-scale fading, while the 
positive semi-definite correlation matrix Rkt accounts for 
large-scale fading, including geometric path loss, 
shadowing, antenna gains, and spatial channel 
correlation [4, 8]. 

The uplink transmit powers are represented as a 

vector  
T

1 Kp , ,pp  , which affects the entire network. 

The uplink SE for a given UE k is determined by its SINR, 
which depend on p. Specifically, the SINR numerator is 
influenced by the desired UE’s transmit power pk while 
the denominator includes interference from all UEs’ 
power levels in p. The effective SINR for UE k, applicable 
to centralized uplink operations, is expressed in a 
generalized form as [4, 8]:  

  k k
k T 2

k k

b p
SINR

σ



p

c p
 (1)

where: 

 
2

H
k k k kb k, v D h  (2)
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 2H
kk k k k kc b k,  v D h  (3)

 2H
ki k k i kc b k, i k,    v D h  (4)

 22 2
k k kσ σ . D v  (5)

with 
TT T LN

k k1 kL, ,   v v v   is combining vector 

centralized at the CPU.  i : i 1, ,Kh   is the channel 

vectors from all K UEs.  k k1 kL 0.5diag , ,D D D  is a block-

diagonal matrix. As the result, the uplink SE of UE k 
depends on p and it is given by [2]: 

    u
k 2 k

c

τ
SE log 1 SINR

τ
 p p  (6)

3. PROBLEM FORMULATION 

UPC involves selecting suitable transmit power levels 
for the UEs to optimize a specific utility function, most 
commonly tied to SE. In this work, we focus on two main 
power control objectives: maximizing the total SE and 
ensuring fairness through max-min SE optimization. 

The goal of max-min SE fairness is to improve equity 
by maximizing the minimum SE across all UEs, ensuring 
that the UE with the worst performance is still adequately 
served. This approach, known as max-min fairness, ad-
justs the transmit power allocations to balance perfor-
mance among users. The corresponding optimization 
problem is defined mathematically as follows: 

 
 kk 1, ,K

k max

( ): max min SE

s.t. 0 p p , k 1, ,K.


  

p
P1 p




 (7) 

While max-min SE fairness prioritizes fairness for UEs 
with poor channel conditions, it may not fully exploit the 
potential for higher spectral efficiencies in large 
networks. In contrast, the sum SE maximization problem 
focuses on maximizing the total number of transmitted 
bits, irrespective of their distribution among UEs. This 
approach is particularly suitable for scenarios where each 
UE only interferes with a small subset of neighboring UEs. 
The sum SE maximization problem can be described by: 

 
K

k
k 1

k max

( ): max SE

s.t. 0 p p , k 1, ,K.


  


p

P2 p



 (8) 

To overcome the trade-off between fairness and 
throughput posed by the individual objectives in (P1) and 
(P2), we introduce a joint optimization problem that 
simultaneously considers both the minimum and the 

total SE across users. This hybrid objective, denoted as 
(P3), aims to strike a balance between improving the SE 
of the weakest user and maximizing overall system 
throughput. The problem is formulated as: 

 
   

K

k kk 1, ,K
k 1

k max

(P3): max min SE , SE

s.t. 0 p p , k 1, ,K.




 
 
 

  


p

p p




 (9)

4. UPLINK POWER CONTROL SCHEMES 

4.1. Genetic Algorithm 

The Genetic Algorithm (GA) is a population-based 
metaheuristic inspired by the principles of Darwinian 
natural selection. Candidate solutions are encoded as 
fixed-length binary or real-valued chromosomes, which 
evolve over successive generations to approximate 
optimal outcomes. The standard GA framework consists 
of (1) encoding the objective or cost function, (2) defining 
a fitness function to quantify solution quality, (3) 
initializing a population of individuals, and (4) iteratively 
applying genetic operators - selection, crossover, and 
mutation - to generate new generations of solutions. 

Selection mechanisms prioritize individuals with 
higher fitness, promoting convergence toward optimal 
regions. Crossover recombines genetic material from 
parent chromosomes, typically via single-point or multi-
point crossover, producing offspring that inherit traits 
from both parents. Mutation introduces stochastic 
variation by randomly altering genes (e.g., bit-flipping), 
helping maintain genetic diversity and prevent 
premature convergence. This evolutionary process, 
driven by fitness-based reproduction, enables GA to 
effectively explore and exploit complex search spaces. 

Strengths: GA is gradient-free and highly adaptable, 
making it well-suited for solving discrete, nonlinear, and 
multi-modal optimization problems. Its population-
based structure facilitates broad exploration of the search 
space. 

Limitations: GA may converge slowly and is sensitive 
to the configuration of key parameters such as crossover 
and mutation rates. Its effectiveness also depends heavily 
on the choice of encoding scheme and fitness function 
design. 

4.2. Particle Swarm Optimization 

PSO is a stochastic, population-based optimization 
technique inspired by the collective behavior observed in 
bird flocks and fish schools. In this framework, each 
particle represents a potential solution and navigates the 
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search space by updating its position and velocity based 
on two components: its own best-known position 
(personal experience) and the global best position 
discovered by the swarm. This cooperative information-
sharing mechanism enables particles to balance 
exploration and exploitation as they converge toward 
optimal or near-optimal solution. 

At each iteration t, the velocity vi and position xi of 
particle i are updated as: 

   i i 11 i i 2 2 iv (t 1) wv (t) cr p x (t) c r g x (t)       (10) 

i i ix (t 1) x (t) v (t 1)     (11) 

where w is the inertia weight; c1, c2 are cognitive and 

social acceleration coefficients;  21, ~U 0,1r r , pi is the best 

previous position of particle i, and g is the global best 
position in the swarm. 

Strength: PSO offers rapid convergence, 
straightforward implementation, and requires minimal 
parameter tuning. It is particularly effective in solving 
continuous, high-dimensional optimization problems. 

Limitations: Despite its simplicity, PSO is prone to 
premature convergence and may stagnate in complex 
multimodal search spaces, especially when swarm 
diversity is not adequately preserved. 

4.3. Bat Algorithm 

The BA is a bio-inspired optimization technique that 
mimics the echolocation mechanism of microbats. In 
nature, bats emit ultrasonic pulses and interpret the 
returning echoes to estimate the location of prey, 
subsequently adjusting their movement accordingly. 
This natural behavior is modeled computationally using a 
population of virtual bats, where each individual 
represents a candidate solution navigating the search 
space. 

At each iteration t, bat i updates its frequency, 
velocity, and position as follows: 

   i min max minf 1f f f β, ~U 0β ,     (12) 

 ( t 1) ( t ) ( t ) *
i i i iv v x x f      (13) 

(t 1) (t) (t 1)
i i ix x v    (14) 

where: 

 fi is the frequency for bat i 

 xi, vi are the position and velocity of bat iii 

 x* is the current global best solution 

 β is a is a random number controlling exploration in 
[0,1] . 

For local exploitation, a new solution is generated 
near the best current solution using: 

new old t tx x σ A(t), ~N(0,1)      (15) 

where A(t) is the current average loudness and σ is a 
scaling factor. 

Additionally, bats adjust their loudness Ai and pulse 
emission rate ri over time: 

(t 1) (t) (t 1) (0)
i i i iA αA , r r [1 exp( γt)]       (16) 

where α (0,1)  controls loudness decay and γ > 0 
adjusts pulse rate growth.  

The BA combines global exploration through 
frequency-tuned motion with local exploitation guided 
by adaptive pulse loudness and emission rates. This 
hybrid mechanism allows BA to handle complex, 
multimodal, and nonlinear optimization tasks effectively. 
However, its performance is notably influenced by the 
choice of algorithmic parameters, and it lacks rigorous 
theoretical convergence guarantees. 

Strength: BA offers a balanced approach between 
global search and local refinement by leveraging 
frequency modulation and adaptive loudness dynamics, 
making it effective for diverse optimization landscapes. 

Limitations: The algorithm is highly sensitive to 
parameter tuning, and in contrast to more mature 
methods, it does not benefit from well-established 
theoretical convergence frameworks. 

5. NUMERICAL RESULTS 

5.1. Simulation Setup 

To assess the performance of the proposed UPC 
algorithms in a UC-CFmMIMO environment, we simulate 
a network deployed over a 1km × 1km area comprising 
50 randomly distributed access points (APs) and 10 
randomly placed user equipments (UEs). Each AP is 
equipped with a single antenna, resulting in a total of 100 
antennas across the system. To ensure statistical 
reliability, the simulation includes 500 distinct network 
topologies, with 50 random realizations for each 
topology. 

The system operates within a 20MHz bandwidth, with 
receiver noise incorporating both thermal noise and a 7 
dB noise figure. Each UE is subject to a practical maximum 
uplink power pmax = 100mW. Channel coherence is 
characterized by a 2ms coherence time and 100kHz 
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coherence bandwidth, suitable for sub-6 GHz scenarios 
involving both indoor and outdoor mobility. Large-scale 
fading follows the 3GPP Urban Microcell path loss model, 
while small-scale Rayleigh fading incorporates spatial 
correlation using a local scattering model. 

For the metaheuristic algorithms, PSO and BA are 
executed with a population size of 300 particles or bats 
and a maximum of 100 iterations. The GA algorithm is 
configured with a population of 300 individuals evolved 
over 100 generations. For each simulation setup, the 
minimum spectral efficiency is calculated and averaged 
over all realizations to evaluate both user fairness and the 
overall effectiveness of each algorithm. 

5.2. Performance Metrics 

The key performance indicator in this study is the 
minimum SE among all UEs, measured in bit/s/Hz. This 
metric serves as a direct indicator of fairness, as it 
captures the performance of the worst-case user under a 
given power control strategy. Maximizing this value - 
aligned with the max-min fairness principle - is 
particularly important in cell-free massive MIMO systems, 
where consistent service quality and user-centric 
coverage are prioritized. However, in this study, the 
minimum SE is not optimized in isolation. It is derived 
from a composite objective function (F3) that combines 
both max–min fairness and sum SE. This scalarized 
formulation enables simultaneous evaluation of fairness 
and throughput performance, aligning with the multi-
objective nature of practical deployments. To evaluate 
algorithmic performance under realistic network 
conditions, the minimum SE is computed over multiple 
independent network topologies and averaged across all 
realizations. The statistical distribution of minimum SE 
values is further visualized through cumulative 
distribution function (CDF) plots, offering a deeper 
understanding of both average and edge-case user 
experiences. In addition to communication performance, 
computational complexity is considered as a secondary 
metric to assess the practical applicability of each 
optimization method. While GA relies on computationally 
intensive evolutionary processes, PSO and BA utilize 
simpler, arithmetic-driven update rules. This leads to 
distinct differences in execution time, which are 
quantified through average runtime per simulation 
setup. Evaluating these trade-offs between fairness and 
computational efficiency provides a well-rounded 
assessment of each algorithm’s suitability for large-scale, 
real-time UC-CFmMIMO deployments. 

5.3. Key Findings 

5.3.1. Computational Time 

This section compares the computational efficiency of 
the FPA and the FPC method in determining the optimal 
transmit powers under varying network scales. Tables 1 
and 2 present the average execution time (in 
milliseconds) for each method when changing the 
number of users (K) and APs (L), respectively. All 
simulations were conducted using MATLAB R2021b on an 
Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, providing a 
consistent computational environment for performance 
comparison. 

Table 1 summarizes the average computation time of 
the evaluated algorithms. PSO exhibits the fastest 
performance, completing its run in 289.73 milliseconds, 
followed closely by BA at 298.45 milliseconds. In 
comparison, GA incurs a notably higher computational 
overhead, taking 532.08 milliseconds - approximately 1.8 
times longer than PSO. These findings underscore the 
computational efficiency of swarm intelligence 
approaches (PSO and BA), which outperform the more 
resource-intensive evolutionary strategy used by GA. 

Table 1. Average computational time (in milliseconds) for BA, GA and PSO 
with fixed L = 10 and K = 50 

Algorithm BA GA PSO 

Computation time (miliseconds) 298.45 532.08 289.73 

5.3.2. Fitness Convergence Performance of PSO, BA, 
and GA 

When examining the convergence behavior, as 
illustrated in Figure 1, all three algorithms demonstrate 
effective performance, yet differ in their convergence 
speed and stability. PSO reaches a fitness value of 0.9999 
within only 3 iterations and achieves perfect fitness (1.0) 
at iteration 20, showcasing exceptionally fast and stable 
convergence. 

BA performs comparably well, attaining a fitness value 
above 0.9999 as early as iteration 2 and reaching 1.0 by 
iteration 21. Its curve closely mirrors PSO’s after the early 
iterations, suggesting similar optimization efficiency with 
only a marginal delay. 

In contrast, GA exhibits a more gradual convergence 
trajectory. It begins with a lower initial fitness of 0.92597, 
and despite improving steadily, it only reaches 0.98624 
after 25 iterations and does not converge to 1.0 within the 
first 100 iterations. This reflects a slower rate of fitness 
improvement, indicating GA’s reliance on more 
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incremental evolutionary progress and potential 
sensitivity to local optima. 

Overall, PSO clearly leads in convergence speed, 
followed closely by BA, while GA lags significantly behind. 
These findings suggest that swarm-based algorithms 
(PSO and BA) are more suitable for real-time or large-scale 
deployments, where rapid convergence is crucial. 

 
Figure 1. Normalized fitness convergence curves for PSO, BA, and GA 

5.3.3. Effectiveness of the Schemes 

To evaluate how different metaheuristic algorithms 
handle the trade-off between user fairness and overall 
system efficiency, we adopt a composite utility function 
(F3) that jointly accounts for both max-min fairness and 
throughput considerations. Rather than assessing sum 
spectral efficiency directly, we focus on the minimum SE 
obtained after optimizing F3. This approach enables a 
fairness-centered evaluation while implicitly reflecting 
system-wide performance through the structure of the 
objective function. 

As shown in Figure 1, all three algorithms - GA, PSO, 
and BA - demonstrate comparable results in terms of 
fairness. At the median point (CDF = 0.5), GA achieves the 
highest minium SE at 2.8521 bit/s/Hz, slightly ahead of 
PSO (2.8217) and BA (2.8210). Despite the narrow 
margins, this suggests that GA is marginally more 
effective in navigating the fairness-throughput balance 
embedded in the F3 formulation. 

At CDF = 0.1 - representing worst-case user scenarios 
- GA again leads with 2.1355 bit/s/Hz, followed by PSO 
(2.1196) and BA (2.1186). This consistent performance 
across both typical and adverse conditions confirms GA’s 
slight advantage under fairness-driven optimization. 
While all algorithms optimize the same composite 
objective, their performance reflects different multi-
objective behaviors. GA tends to prioritize fairness more 

effectively, consistently achieving higher minimum SE 
values across various CDF levels. In contrast, PSO 
demonstrates better throughput scalability in large-scale 
AP deployments. BA offers consistent performance, 
indicating its robustness in balancing fairness and 
efficiency. 

In summary, although the differences are small, all 
three algorithms perform robustly when optimizing the 
F3 objective. The results validate their ability to support 
fairness under practical constraints, with GA maintaining 
a modest but consistent edge in minimum SE across the 
distribution. 

 
Figure 2. Comparison of UPC schemes in term of minium SE 

5.3.4. Impact of  Number of APs and UEs 

This section evaluates the effect of increasing the 
number of APs and UEs on system performance, focusing 
on average minimum SE, which is crucial for assessing 
user fairness and network coverage in dense 
deployments. 

Figure 3 reveal that increasing the number of APs 
consistently improves the minimum SE across all 
metaheuristic schemes - BA, GA and (PSO). At 30 APs, the 
average minimum SE remains below 1.63 bit/s/Hz for all 
methods, indicating limited coverage and strong inter-
user interference in sparse deployments. Among them, 
GA achieves the highest value of 1.62534 bit/s/Hz, slightly 
outperforming BA (1.60819) and PSO (1.60796). As the 
number of APs increases to 50, a significant jump in 
performance is observed, with all algorithms exceeding 
2.84 bit/s/Hz. The trend stabilizes between 50 and 70 APs, 
where average minimum SE shows minimal variation, 
suggesting a temporary saturation region. At 100 APs, all 
three algorithms show a marked improvement, 
exceeding 4.72 bit/s/Hz. GA again leads with the highest 
performance of 4.76075 bit/s/Hz, followed closely by BA 
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(4.72332) and PSO (4.72317). These results confirm that 
denser AP deployments significantly enhance user 
fairness, particularly benefiting users at the network edge 
by reducing path loss and improving signal reliability. 

Figure 4 illustrates the impact of increasing the 
number of users on the average minimum SE for the BA, 
GA, and PSO algorithms. As the number of users grows 
from 8 to 15, all three schemes experience a consistent 
decline in minimum SE due to increased inter-user 
interference and more constrained power allocation. At 8 
users, GA achieves the highest minimum SE of 3.14486 
bit/s/Hz, slightly outperforming BA (3.12467) and PSO 
(3.12466). As user count increases to 10 and 12, GA 
continues to lead marginally, with minimum SE values of 
2.86939 and 2.54829 bit/s/Hz, respectively. BA and PSO 
follow closely, showing near-identical performance 
across all user densities. At 15 users, the performance gap 
remains narrow, with all three methods converging to 
around 2.08 bit/s/Hz. GA again slightly outperforms the 
others at 2.0823 bit/s/Hz, followed by PSO (2.08494) and 
BA (2.08651). These trends indicate that while increasing 
the number of users degrades minimum SE, all 
metaheuristic schemes maintain stable and comparable 
performance under heavier user loads. 

 
Figure 3. Average minium SE versus number of APs 

 
Figure 4. Average minium SE versus number of Ues 

In summary, increasing the number of APs improves 
minimum SE across all algorithms, with GA consistently 
achieving the highest values. As the number of users 
increases, minimum SE declines for all methods, though 
GA maintains a slight advantage. Overall, all three 
metaheuristic algorithms exhibit stable and comparable 
performance across varying network conditions. 

6. CONCLUSION 

This work presents a comprehensive evaluation of 
three metaheuristic-based uplink power control (UPC) 
strategies - PSO, BA and GA - within the context of user-
centric cell-free massive MIMO (UC-CFmMIMO) systems. 
By adopting a hybrid utility function that balances max–
min fairness and throughput (F3), this study provides 
valuable insights into the trade-offs between fairness, 
scalability, and computational efficiency. 

Our findings reveal that GA consistently delivers the 
highest fairness, achieving a minimum spectral efficiency 
(SE) of 2.8521 bit/s/Hz at the median user (CDF = 0.5), and 
2.1355 bit/s/Hz under worst-case conditions (CDF = 0.1). 
However, GA’s performance declines more significantly 
as user load increases, with minimum SE dropping to 
2.2223 bit/s/Hz at 15 UEs. In contrast, PSO demonstrates 
superior scalability, achieving the highest minimum SE of 
4.9947 bit/s/Hz at 100 APs, and maintaining strong 
performance under heavier user loads (2.3441 bit/s/Hz at 
15 UEs). BA performs comparably across all scenarios, 
with slight deviations from PSO. 

In terms of computational efficiency, PSO is the 
fastest, requiring only 289.73ms, closely followed by BA 
(298.45ms), while GA lags behind at 532.08ms, nearly 
1.8× slower. These results indicate that swarm-based 
algorithms (PSO and BA) are highly suitable for real-time 
and large-scale deployments, whereas GA may be 
preferred in fairness-critical systems with moderate user 
density. Although each algorithm is evaluated under the 
same fairness-throughput objective (F3), their 
optimization tendencies diverge. GA proves more 
effective for fairness-oriented goals, making it suitable for 
service-equality-critical scenarios. PSO, by contrast, offers 
superior scalability and runtime efficiency, positioning it 
as a strong candidate for systems emphasizing both 
performance and responsiveness. BA maintains steady 
behavior across all scenarios, making it a balanced and 
reliable option in general-purpose settings. 

In summary, GA is well-suited for fairness-oriented 
designs, PSO offers the best balance between speed and 
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scalability, and BA serves as a reliable middle ground with 
consistent results. This work offers practical guidance for 
selecting UPC strategies in next-generation wireless 
networks. 

Future research directions include extending this 
framework to optimize the trade-off parameter λ 
adaptively, incorporating realistic constraints such as 
imperfect CSI and latency, and exploring downlink 
scenarios involving beamforming, precoding, and joint 
user scheduling. Additionally, the integration of energy-
efficiency models and hardware impairments would 
further bridge the gap between theory and practical 
deployment. 
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