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ABSTRACT 

The development of a UAV-based surveillance system integrated with 
artificial intelligence (AI) poses numerous technical challenges, 
prominently involving two core problems: optimal coverage path planning 
and object detection and classification from aerial imagery. These are 
crucial components to ensure effective navigation and accurate target 
identification during UAV operations. This paper proposes a ground control 
system that functions as a command station, capable of generating energy-
efficient and comprehensive flight paths for monitoring tasks. 
Simultaneously, it integrates AI models to detect and classify objects from 
aerial image data captured by the UAV. Simulation-based evaluations 
demonstrate the feasibility and potential application of the proposed 
solution in deploying intelligent UAV systems in Vietnam. 
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1. INTRODUCTION 

In recent years, automated surveillance systems 
utilizing unmanned aerial vehicles (UAVs) have gained 
significant attention and are increasingly applied across 
various fields such as public security, national defense, 
forest monitoring, infrastructure inspection, precision 
agriculture, and disaster response. With high mobility 
and flexibility, UAVs enable the collection of high-
resolution and real-time image data over wide areas, 
thereby effectively supporting monitoring tasks and 
rapid decision-making. 

A critical direction in the advancement of UAV-based 
surveillance systems involves enabling autonomous or 
semi-autonomous operation, with the aim of minimizing 
human intervention and enhancing operational 
efficiency. UAV-based surveillance systems has garnered 
broad research interest due to its mobility, wide-area 
coverage, and cost-effectiveness compared to traditional 
surveillance methods. However, deploying such systems 
entails addressing multiple complex technical problems. 
Among them, two foundational challenges that 
determine the system’s quality and effectiveness are: (1) 
optimal coverage path planning (CPP), which ensures 
that the UAV navigates an energy- and time-efficient 
trajectory while fully covering the designated 
surveillance area; and (2) object detection and 
classification in aerial images, to accurately recognize 
critical targets from collected image data and support 
automated surveillance tasks. 

Coverage Path Planning (CPP) is a fundamental 
problem that aims to ensure a UAV can observe the entire 
target area while minimizing travel cost. Traditional CPP 
approaches often rely on spatial decomposition 
techniques such as Boustrophedon and Spanning Tree 
Coverage [1, 2]. However, these methods are primarily 
effective in static and structurally simple environments. In 
more complex scenarios such as large-scale patrol 
regions or environments with energy and kinematic 
constraints, coordinated operation of multiple UAVs 
becomes necessary. To address this, various optimization 
models for CPP have been proposed, which are typically 
solved using metaheuristic optimization algorithms such 
as Genetic Algorithms, Ant Colony Optimization, and 
Particle Swarm Optimization [6, 10, 11]. 

Recently, reinforcement learning and deep learning-
based approaches have been introduced to improve 
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adaptability in dynamic environments. These models aim 
to learn optimal coverage strategies directly, even under 
energy constraints and uncertain environmental factors. 
They can operate in environments with obstacles, partial 
observability, and concurrent multi-UAV deployment. 
Empirical results often show that these learning-based 
methods outperform classical planning techniques in 
terms of coverage efficiency and adaptability [8, 12-17]. 
Nevertheless, the high computational complexity inherent 
in many of these models poses a significant barrier to real-
world deployment. In practice, UAV systems require fast 
response times and robust performance under 
constrained computational resources [17]. 

Object detection and classification from UAV-
captured imagery constitute a critical component in 
automated surveillance systems. With the rapid 
advancement of deep learning, models such as Faster R-
CNN, YOLO, and SSD [3, 4] have been widely adopted for 
processing aerial imagery acquired by UAVs. However, 
the inherent characteristics of UAV images such as high-
altitude viewpoints, varying perspectives, high 
resolutions, and the typically small size of target objects, 
pose significant challenges for detection accuracy. 

To address these issues, several studies have 
proposed model enhancements or incorporated 
additional preprocessing steps aimed at improving 
detection performance. In [5], the authors adopted a hard 
negative mining strategy to better identify difficult object 
instances in UAV imagery. Additionally, some research 
efforts have explored multimodal data fusion, integrating 
inputs from RGB cameras, thermal infrared sensors, and 
LiDAR, to enhance detection reliability under complex 
environmental conditions [7]. 

In this paper, we propose a control system capable of 
generating energy-efficient and fully covering flight 
paths for UAVs in surveillance missions. The system is 
deployed on a ground control station, which is 
responsible for the entire flight planning and data 
analysis process. This architecture significantly reduces 
the computational load on the UAV and is well-suited for 
real-world deployment scenarios. Moreover, the system 
integrates an artificial intelligence (AI) model to perform 
object detection and classification on images captured by 
the UAV. 

The structure of this paper is organized as follows: 
Section 2 introduces the mathematical model for optimal 
coverage path planning (CPP) and the proposed solution 
methodology. 

Section 3 presents the AI-based object detection and 
classification model used for aerial imagery. Section 4 
describes the system development workflow and the 
software tools employed. Section 5 discusses the results 
obtained in a simulated environment. Finally, Section 6 
concludes the paper and outlines potential future 
research directions. 

2. COVERAGE PATH PLANNING PROBLEM 

Coverage path planning (CPP) for surveillance areas is 
a fundamental problem in autonomous UAV-based 
monitoring systems. The objective is to construct a 
trajectory that enables the UAV to fully cover the region 
of interest without leaving any regions unobserved, while 
optimizing criteria such as path length, flight time, or 
energy consumption. CPP is especially critical in 
applications such as agricultural monitoring, search and 
rescue operations, and border patrol, where UAVs must 
conduct systematic and efficient flights. The problem 
becomes increasingly complex when the surveillance 
area includes uneven terrain, obstacles, or when UAV 
operations are constrained by factors such as limited 
energy capacity, kinematic constraints, and sensor 
coverage range.  

In this study, we focus on the two-dimensional 
formulation of the CPP problem, taking into account both 
energy constraints and sensor coverage capabilities, with 
the goal of generating an optimal trajectory suitable for 
real-world UAV surveillance deployment. We adopt the 
energy-efficient coverage path planning model 
proposed in [9], which not only ensures complete area 
coverage but also minimizes overall energy 
consumption. The model supports multi-UAV scenarios 
and incorporates the ability to avoid static obstacles. 
Moreover, the model is well-structured, scalable, and 
particularly suitable for implementation under practical 
conditions in Vietnam. Representing the surveillance area 
as a grid provides additional advantages: it facilitates 
integration with simple pathfinding algorithms, reduces 
computational time, and simplifies deployment within 
the ground control system.  

Specifically, the surveillance area is discretized into a 
grid of square cells, each representing a discrete 
subregion that must be covered. The center of each cell is 
designated as a waypoint, which UAVs must visit under 
the constraint that each cell is scanned exactly once, 
while minimizing the total energy consumption. The 
model employs a cost function that integrates flight 
distance and travel time, allowing for a more realistic 
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simulation of actual flight conditions. Additionally, basic 
kinematic constraints are incorporated to ensure the 
feasibility of the generated flight paths. For a detailed 
description of the problem formulation and the 
associated energy model, the reader is referred to [9] and 
related references. 

The coverage path planning model in [9] supports 
the avoidance of known static obstacles by excluding 
unsafe cells from the feasible space. These cells are 
assigned significantly high energy costs, effectively 
discouraging their inclusion in any feasible trajectory. 
This formulation results in a Mixed-Integer Linear 
Programming (MILP) problem, where binary variables 
are used to indicate whether a UAV traverses a given 
waypoint. Linear constraints are employed to ensure 
path connectivity, complete area coverage, and energy 
minimization. 

For large-scale patrol areas, deploying multiple UAVs 
becomes essential. A decomposition strategy is applied 
to partition the area into subregions, where the number 
of subregions matches the number of available UAVs. In 
other words, each UAV is responsible for covering one 
subregion, and the CPP model from [9] is independently 
applied to each of these subregions. The MILP problem 
defined for each subregion can be solved using various 
optimization solvers. In this study, energy consumption 
values associated with traveling between waypoints are 
first computed. These values may depend on multiple 
factors, such as the distance between waypoints, UAV 
speed, and turning angles. The IBM CPLEX solver is then 
selected for solving the MILP, owing to its effectiveness in 
handling medium to large scale problems, as well as its 
robustness and computational efficiency. 

3. OBJECT DETECTION AND CLASSIFICATION 
In addition to optimizing flight paths for 

comprehensive area coverage, the ability to detect and 
classify objects in aerial images captured by UAVs for 
surveillance, alert generation, or autonomous decision-
making. This processing stage is essential in enabling the 
system to recognize the presence of critical targets such 
as humans, vehicles, suspicious objects, or anomalous 
events within the monitored environment. 

Aerial imagery captured by UAVs differs significantly 
from conventional image data due to its top-down 
perspective, small object sizes, complex backgrounds, 
and substantial variations in lighting conditions, flight 
altitude, and terrain. Consequently, object detection and 
classification in this context require recognition models 

with strong generalization ability, fast inference speed, 
and high accuracy under practical operating conditions.  

 

 

 

 

 

 

 

 
Figure 1. Samples in fine-tuning dataset for YOLOv10 

In this study, we selected YOLOv10, a recent model in 
YOLO family, which is distinguished by its balance 
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between real-time processing 
speed and detection precision. 
YOLOv10 is specifically 
designed to perform 
effectively even on devices 
with limited computational 
resources, such as UAVs or 
mobile ground control units. 

Although YOLOv10 has 
been pre-trained on widely 
used datasets such as COCO, 
its performance in UAV-based 
surveillance scenarios remains 
limited. In such settings, 
images are captured from high 
altitudes with varying 
viewpoints, and target objects 
are often small or partially occluded. Furthermore, several 
domain-specific object classes commonly encountered in 
surveillance environments are not represented in the 
original training dataset, leading to suboptimal detection 
accuracy that falls short of practical requirements.  

To address these limitations, we performed fine-
tuning of the YOLOv10 model on a specialized dataset 
comprising 800 manually labeled images with over 2,000 
annotations. The annotation set focuses on object classes 
that are critical in surveillance scenarios, including eight 
categories: human, car, motorbike, container truck, 
bench, house, umbrella, and crosswalk. Preprocessing 
steps and data augmentation techniques were applied to 
enhance the robustness of the dataset. Figure 1 illustrates 
several sample images from the dataset, while the class 
label distribution is shown in Figure 2. 

 
Figure 2. Class label distribution in the training dataset 

Figure 3. Fine-tuned YOLOv10 model evaluation results 

Figure 3 presents the fine-tuning results of the 
YOLOv10 model on both the training and validation 
datasets. The loss metrics - including box loss, 
classification loss (cls_loss), and distribution focal loss 
(dfl_loss) - consistently decreased and stabilized across 
both sets, indicating an effective learning process 
without overfitting. In parallel, evaluation metrics such as 
precision, recall, mAP@0.5, and mAP@0.5:0.95 steadily 
improved and converged after approximately 200 
epochs, demonstrating acceptable accuracy and good 
generalization capability of the model. 

4. SYSTEM DEPLOYMENT 

The UAV control system was developed following a 
four-stage process, which includes: (1) constructing the 
mathematical model and solving the CPP optimization 
problem; (2) developing the module for UAV 
communication and control; (3) implementing the 
module for object detection and classification based on 
aerial imagery captured by the UAV; and (4) integrating 
all components into a unified system. 

Stage 1: Mathematical Modeling and CPP 
Optimization 

The input data consists of the boundary coordinates that 
define the surveillance area. This area is then partitioned 
into grid cells, where the grid resolution matches the 
footprint width of the onboard UAV camera, and waypoints 
are defined accordingly. An energy consumption model for 
the UAV is constructed based on the formulation in [9], and 
the specific CPP problem is established. The IBM CPLEX 
optimization library is then employed to solve the CPP 
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problem as a Mixed-Integer Linear Programming (MILP) 
formulation. The output is an ordered sequence of 
waypoints for each UAV that enables energy- and time-
efficient coverage of the target area. 

Stage 2: Development of the UAV Communication 
and Control Module 

The optimal trajectories generated in Stage 1 are 
transformed and mapped to real-world geographic 
coordinates before being integrated into a UAV flight 
simulation system. The selected simulation environment 
incorporates several tools that facilitate UAV connectivity 
and control. The core tools used include: 

 PX4-Autopilot: an open-source flight control platform 
that provides stabilization and autonomous navigation 
capabilities for UAVs. It supports a wide range of aerial 
vehicles and is easily integrated with simulation tools such 
as QGroundControl, AirSim, and ROS. 

 QGroundControl: an open-source ground control 
station software used for real-time UAV monitoring and 
control. It offers an intuitive user interface for flight path 
planning, position tracking, sensor configuration, and 
data reception from the UAV.  QGroundControl is fully 
compatible with PX4 and communicates with the flight 
controller via the MAVLink protocol. 

 AirSim: an open-source simulation platform 
developed by Microsoft, designed to emulate the 
operation of UAVs and autonomous vehicles in realistic 
3D environments such as Unreal Engine and Unity. AirSim 
supports various sensors including cameras, GPS, LiDAR, 
and IMU, enabling the testing and evaluation of control 
algorithms, computer vision, and machine learning 
techniques under near-real conditions. The platform 
integrates well with PX4 and ROS, making it suitable for 
incorporation into UAV development workflows prior to 
field deployment. 

This simulation setup allows for verification of 
trajectory feasibility and accuracy under conditions that 
closely resemble real-world environments. 

Stage 3: Development of the Object Detection and 
Classification Module 

This module plays a central role in identifying key 
targets from UAV-captured imagery and comprises the 
following core functionalities: 

 Image data acquisition: Real-time aerial images are 
continuously collected from the UAV's onboard camera 
system, ensuring a stable data stream to support 
subsequent object recognition processes. 

 Object detection and classification: The fine-tuned 
YOLOv10 model is employed to detect and classify 
multiple types of target objects in the captured images. 
The list of object classes to be recognized is predefined 
based on mission requirements. 

 Automated alerting: When an object is detected 
within the surveillance area, the system triggers a “target 
detected” alert, enabling the ground control station to 
promptly respond and take appropriate actions, thereby 
enhancing patrol effectiveness. 

The object detection and classification module is a key 
component that enables the UAV surveillance system to 
operate accurately, efficiently, and adaptively under 
various environmental conditions. 

Stage 4: System Integration 

The system is implemented as a ground control 
station with a user-friendly interface, integrating all 
necessary functionalities to coordinate and monitor UAV 
operations during surveillance missions. This stage 
involves building a comprehensive management 
interface that includes the following capabilities: defining 
surveillance areas, computing optimal UAV trajectories, 
configuring object classes for recognition, monitoring 
UAV positions, performing real-time object detection and 
classification, and issuing alerts when targets are 
identified. 

5. SIMULATION RESULTS AND DISCUSSION 

The overall system was developed in the Visual Studio 
2022 environment, with the core modules implemented 
in Python. The tools for simulating UAV control were 
configured within Windows environment equipped with 
WSL2 (Windows Subsystem for Linux). 

Figure 4 shows the main interface of the system with 
a connected quadrotor-type UAV simulated in AirSim, 
ready for patrol deployment. Figure 5 displays the 
interface for defining the surveillance area, using an 
interactive map provided by QGroundControl. The 
operator can intuitively designate the patrol region with 
minimal effort by simply clicking on the map. 

Once the surveillance area is defined, the system 
proceeds to compute the optimal coverage path for the 
UAV. Based on the optimal coverage path planning 
model, the system generates energy-efficient flight 
trajectories that fully cover the patrol area for each UAV. 
Figure 6 illustrates the computed optimal path, which has 
been transferred to the UAV control environment and is 
ready for mission execution. 
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Figure 4. Main interface of the system with the UAV successfully connected 

Figure 5. Interface for defining the surveillance area 
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Figure 6. Coverage-optimized flight trajectory over the defined patrol 
zone 

Figure 7. Object selection interface for monitoring tasks 

 

 

 

Figure 6. Coverage-optimized flight trajectory over the defined patrol zone 
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Figure 8. Visualization panel for tracking UAV simulation 

Figure 9. Real-time object detection results visualized in the control 
interface 

 

 Figure 9. Real-time object detection results visualized in the control interface 
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Figure 7 shows the interface for configuring the object 
classes to be detected. The ground control station allows 
the user to select and configure the types of objects of 
interest, enabling the detection and classification module 
to focus on the specific requirements of the mission. 
Depending on the surveillance objectives and the 
training dataset used, the list of detectable object classes 
can be flexibly modified or expanded. As a result, the 
system is not limited to the eight example categories 
illustrated; additional classes can be integrated if 
appropriate training data is available and the model is 
fine-tuned accordingly. This flexibility allows the system 
to adapt to a wide range of surveillance scenarios, 
including security, traffic monitoring, emergency 
response, and urban management. 

The ground control interface provides an intuitive 
map-based visualization of the UAV's current position 
and status, enabling operators to effectively monitor the 
flight progress and any events that arise during the patrol 
mission. Figure 8 presents the system’s visual interface for 
tracking the simulated UAV. With real-time object 
detection and classification functionality, the system 
continuously receives image streams transmitted from 
the UAV throughout the patrol flight. These frames are 
immediately processed by the fine-tuned YOLOv10 
model, allowing for instant identification and 
categorization of objects as soon as they appear within 
the UAV’s field of view. 

The recognition results are visually displayed on the 
control interface (Figure 9), where each detected object is 
enclosed within a bounding box and labeled with its 
corresponding class. Simultaneously, the system triggers 
an audio alert to draw the operator’s attention, enabling 
rapid situation awareness and timely response. This alert 
mechanism is particularly valuable in missions that 
require quick reactions, such as security surveillance, 
intrusion detection, or tracking suspicious activities. 

6. CONCLUSION 

This paper has introduced an artificial intelligence–
enabled UAV-based surveillance system that 
incorporates two fundamental capabilities: optimal 
coverage path planning and real-time object detection 
and classification from aerial imagery. The proposed 
system is architected as a ground control station that 
integrates a Mixed-Integer Linear Programming (MILP) 
model to optimize flight trajectories, alongside a fine-
tuned YOLOv10 deep learning model tailored for object 
recognition in domain-specific surveillance contexts. 

Simulation-based experimental results validate the 
system’s operational stability, practical deployability, and 
suitability for practical applications in terms of 
performance efficiency, interface intuitiveness, and 
implementation feasibility. The integration of state-of-
the-art simulation platforms including PX4, 
QGroundControl, AirSim, and Unreal Engine has 
significantly accelerated the development and validation 
cycle, enabling thorough testing prior to real-world UAV 
deployment. Future work will focus on enhancing the 
system’s scalability and adaptability, particularly through 
the coordination of multiple UAVs operating 
simultaneously in dynamic environments. Additionally, 
efforts will be directed toward embedding lightweight AI 
models capable of executing inference tasks directly 
onboard the UAVs, thereby ensuring robust performance 
under constrained communication and computational 
resources. 
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