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ABSTRACT

The development of a UAV-based surveillance system integrated with
artificial intelligence (Al) poses numerous technical challenges,
prominently involving two core problems: optimal coverage path planning
and object detection and classification from aerial imagery. These are
crucial components to ensure effective navigation and accurate target
identification during UAV operations. This paper proposes a ground control
system that functions as a command station, capable of generating energy-
efficient and comprehensive flight paths for monitoring tasks.
Simultaneously, it integrates Al models to detect and classify objects from
aerial image data captured by the UAV. Simulation-based evaluations
demonstrate the feasibility and potential application of the proposed
solution in deploying intelligent UAV systems in Vietnam.
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1. INTRODUCTION

In recent years, automated surveillance systems
utilizing unmanned aerial vehicles (UAVs) have gained
significant attention and are increasingly applied across
various fields such as public security, national defense,
forest monitoring, infrastructure inspection, precision
agriculture, and disaster response. With high mobility
and flexibility, UAVs enable the collection of high-
resolution and real-time image data over wide areas,
thereby effectively supporting monitoring tasks and
rapid decision-making.
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A critical direction in the advancement of UAV-based
surveillance systems involves enabling autonomous or
semi-autonomous operation, with the aim of minimizing
human intervention and enhancing operational
efficiency. UAV-based surveillance systems has garnered
broad research interest due to its mobility, wide-area
coverage, and cost-effectiveness compared to traditional
surveillance methods. However, deploying such systems
entails addressing multiple complex technical problems.
Among them, two foundational challenges that
determine the system’s quality and effectiveness are: (1)
optimal coverage path planning (CPP), which ensures
that the UAV navigates an energy- and time-efficient
trajectory while fully covering the designated
surveillance area; and (2) object detection and
classification in aerial images, to accurately recognize
critical targets from collected image data and support
automated surveillance tasks.

Coverage Path Planning (CPP) is a fundamental
problem that aims to ensure a UAV can observe the entire
target area while minimizing travel cost. Traditional CPP
approaches often rely on spatial decomposition
techniques such as Boustrophedon and Spanning Tree
Coverage [1, 2]. However, these methods are primarily
effective in static and structurally simple environments. In
more complex scenarios such as large-scale patrol
regions or environments with energy and kinematic
constraints, coordinated operation of multiple UAVs
becomes necessary. To address this, various optimization
models for CPP have been proposed, which are typically
solved using metaheuristic optimization algorithms such
as Genetic Algorithms, Ant Colony Optimization, and
Particle Swarm Optimization [6, 10, 11].

Recently, reinforcement learning and deep learning-
based approaches have been introduced to improve
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adaptability in dynamic environments. These models aim
to learn optimal coverage strategies directly, even under
energy constraints and uncertain environmental factors.
They can operate in environments with obstacles, partial
observability, and concurrent multi-UAV deployment.
Empirical results often show that these learning-based
methods outperform classical planning techniques in
terms of coverage efficiency and adaptability [8, 12-171].
Nevertheless, the high computational complexity inherent
in many of these models poses a significant barrier to real-
world deployment. In practice, UAV systems require fast
response times and robust performance under
constrained computational resources [17].

Object detection and classification from UAV-
captured imagery constitute a critical component in
automated surveillance systems. With the rapid
advancement of deep learning, models such as Faster R-
CNN, YOLO, and SSD [3, 4] have been widely adopted for
processing aerial imagery acquired by UAVs. However,
the inherent characteristics of UAV images such as high-
altitude viewpoints, varying perspectives, high
resolutions, and the typically small size of target objects,
pose significant challenges for detection accuracy.

To address these issues, several studies have
proposed model enhancements or incorporated
additional preprocessing steps aimed at improving
detection performance. In [5], the authors adopted a hard
negative mining strategy to better identify difficult object
instances in UAV imagery. Additionally, some research
efforts have explored multimodal data fusion, integrating
inputs from RGB cameras, thermal infrared sensors, and
LiDAR, to enhance detection reliability under complex
environmental conditions [7].

In this paper, we propose a control system capable of
generating energy-efficient and fully covering flight
paths for UAVs in surveillance missions. The system is
deployed on a ground control station, which is
responsible for the entire flight planning and data
analysis process. This architecture significantly reduces
the computational load on the UAV and is well-suited for
real-world deployment scenarios. Moreover, the system
integrates an artificial intelligence (Al) model to perform
object detection and classification on images captured by
the UAV.

The structure of this paper is organized as follows:
Section 2 introduces the mathematical model for optimal
coverage path planning (CPP) and the proposed solution
methodology.
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Section 3 presents the Al-based object detection and
classification model used for aerial imagery. Section 4
describes the system development workflow and the
software tools employed. Section 5 discusses the results
obtained in a simulated environment. Finally, Section 6
concludes the paper and outlines potential future
research directions.

2. COVERAGE PATH PLANNING PROBLEM

Coverage path planning (CPP) for surveillance areas is
a fundamental problem in autonomous UAV-based
monitoring systems. The objective is to construct a
trajectory that enables the UAV to fully cover the region
of interest without leaving any regions unobserved, while
optimizing criteria such as path length, flight time, or
energy consumption. CPP is especially critical in
applications such as agricultural monitoring, search and
rescue operations, and border patrol, where UAVs must
conduct systematic and efficient flights. The problem
becomes increasingly complex when the surveillance
area includes uneven terrain, obstacles, or when UAV
operations are constrained by factors such as limited
energy capacity, kinematic constraints, and sensor
coverage range.

In this study, we focus on the two-dimensional
formulation of the CPP problem, taking into account both
energy constraints and sensor coverage capabilities, with
the goal of generating an optimal trajectory suitable for
real-world UAV surveillance deployment. We adopt the
energy-efficient coverage path planning model
proposed in [9], which not only ensures complete area
coverage but also minimizes overall energy
consumption. The model supports multi-UAV scenarios
and incorporates the ability to avoid static obstacles.
Moreover, the model is well-structured, scalable, and
particularly suitable for implementation under practical
conditions in Vietnam. Representing the surveillance area
as a grid provides additional advantages: it facilitates
integration with simple pathfinding algorithms, reduces
computational time, and simplifies deployment within
the ground control system.

Specifically, the surveillance area is discretized into a
grid of square cells, each representing a discrete
subregion that must be covered. The center of each cell is
designated as a waypoint, which UAVs must visit under
the constraint that each cell is scanned exactly once,
while minimizing the total energy consumption. The
model employs a cost function that integrates flight
distance and travel time, allowing for a more realistic
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simulation of actual flight conditions. Additionally, basic
kinematic constraints are incorporated to ensure the
feasibility of the generated flight paths. For a detailed
description of the problem formulation and the
associated energy model, the reader is referred to [9] and
related references.

The coverage path planning model in [9] supports
the avoidance of known static obstacles by excluding
unsafe cells from the feasible space. These cells are
assigned significantly high energy costs, effectively
discouraging their inclusion in any feasible trajectory.
This formulation results in a Mixed-Integer Linear
Programming (MILP) problem, where binary variables
are used to indicate whether a UAV traverses a given
waypoint. Linear constraints are employed to ensure
path connectivity, complete area coverage, and energy
minimization.

For large-scale patrol areas, deploying multiple UAVs
becomes essential. A decomposition strategy is applied
to partition the area into subregions, where the number
of subregions matches the number of available UAVs. In
other words, each UAV is responsible for covering one
subregion, and the CPP model from [9] is independently
applied to each of these subregions. The MILP problem
defined for each subregion can be solved using various
optimization solvers. In this study, energy consumption
values associated with traveling between waypoints are
first computed. These values may depend on multiple
factors, such as the distance between waypoints, UAV
speed, and turning angles. The IBM CPLEX solver is then
selected for solving the MILP, owing to its effectiveness in
handling medium to large scale problems, as well as its
robustness and computational efficiency.

3. OBJECT DETECTION AND CLASSIFICATION

In addition to optimizing flight paths for
comprehensive area coverage, the ability to detect and
classify objects in aerial images captured by UAVs for
surveillance, alert generation, or autonomous decision-
making. This processing stage is essential in enabling the
system to recognize the presence of critical targets such
as humans, vehicles, suspicious objects, or anomalous
events within the monitored environment.

Aerial imagery captured by UAVs differs significantly
from conventional image data due to its top-down
perspective, small object sizes, complex backgrounds,
and substantial variations in lighting conditions, flight
altitude, and terrain. Consequently, object detection and
classification in this context require recognition models
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with strong generalization ability, fast inference speed,
and high accuracy under practical operating conditions.
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Figure 1. Samples in fine-tuning dataset for YOLOv10

In this study, we selected YOLOV10, a recent model in
YOLO family, which is distinguished by its balance
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are often small or partially occluded. Furthermore, several
domain-specific object classes commonly encountered in
surveillance environments are not represented in the
original training dataset, leading to suboptimal detection
accuracy that falls short of practical requirements.

To address these limitations, we performed fine-
tuning of the YOLOv10 model on a specialized dataset
comprising 800 manually labeled images with over 2,000
annotations. The annotation set focuses on object classes
that are critical in surveillance scenarios, including eight
categories: human, car, motorbike, container truck,
bench, house, umbrella, and crosswalk. Preprocessing
steps and data augmentation techniques were applied to
enhance the robustness of the dataset. Figure 1 illustrates
several sample images from the dataset, while the class
label distribution is shown in Figure 2.
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Figure 2. Class label distribution in the training dataset
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Figure 3. Fine-tuned YOLOv10 model evaluation results

Figure 3 presents the fine-tuning results of the
YOLOv10 model on both the training and validation
datasets. The loss metrics - including box loss,
classification loss (cls_loss), and distribution focal loss
(dfl_loss) - consistently decreased and stabilized across
both sets, indicating an effective learning process
without overfitting. In parallel, evaluation metrics such as
precision, recall, mAP@0.5, and mAP@0.5:0.95 steadily
improved and converged after approximately 200
epochs, demonstrating acceptable accuracy and good
generalization capability of the model.

4.SYSTEM DEPLOYMENT

The UAV control system was developed following a
four-stage process, which includes: (1) constructing the
mathematical model and solving the CPP optimization
problem; (2) developing the module for UAV
communication and control; (3) implementing the
module for object detection and classification based on
aerial imagery captured by the UAV; and (4) integrating
all components into a unified system.

Stage 1: Mathematical and CPP

Optimization

Modeling

The input data consists of the boundary coordinates that
define the surveillance area. This area is then partitioned
into grid cells, where the grid resolution matches the
footprint width of the onboard UAV camera, and waypoints
are defined accordingly. An energy consumption model for
the UAV is constructed based on the formulation in [9], and
the specific CPP problem is established. The IBM CPLEX
optimization library is then employed to solve the CPP
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problem as a Mixed-Integer Linear Programming (MILP)
formulation. The output is an ordered sequence of
waypoints for each UAV that enables energy- and time-
efficient coverage of the target area.

Stage 2: Development of the UAV Communication
and Control Module

The optimal trajectories generated in Stage 1 are
transformed and mapped to real-world geographic
coordinates before being integrated into a UAV flight
simulation system. The selected simulation environment
incorporates several tools that facilitate UAV connectivity
and control. The core tools used include:

¢ PX4-Autopilot: an open-source flight control platform
that provides stabilization and autonomous navigation
capabilities for UAVs. It supports a wide range of aerial
vehicles and is easily integrated with simulation tools such
as QGroundControl, AirSim, and ROS.

¢ QGroundControl: an open-source ground control
station software used for real-time UAV monitoring and
control. It offers an intuitive user interface for flight path
planning, position tracking, sensor configuration, and
data reception from the UAV. QGroundControl is fully
compatible with PX4 and communicates with the flight
controller via the MAVLink protocol.

e AirSim: an open-source simulation platform
developed by Microsoft, designed to emulate the
operation of UAVs and autonomous vehicles in realistic
3D environments such as Unreal Engine and Unity. AirSim
supports various sensors including cameras, GPS, LiDAR,
and IMU, enabling the testing and evaluation of control
algorithms, computer vision, and machine learning
techniques under near-real conditions. The platform
integrates well with PX4 and ROS, making it suitable for
incorporation into UAV development workflows prior to
field deployment.

This simulation setup allows for verification of
trajectory feasibility and accuracy under conditions that
closely resemble real-world environments.

Stage 3: Development of the Object Detection and
Classification Module

This module plays a central role in identifying key
targets from UAV-captured imagery and comprises the
following core functionalities:

e Image data acquisition: Real-time aerial images are
continuously collected from the UAV's onboard camera
system, ensuring a stable data stream to support
subsequent object recognition processes.
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e Object detection and classification: The fine-tuned
YOLOv10 model is employed to detect and classify
multiple types of target objects in the captured images.
The list of object classes to be recognized is predefined
based on mission requirements.

e Automated alerting: When an object is detected
within the surveillance area, the system triggers a “target
detected” alert, enabling the ground control station to
promptly respond and take appropriate actions, thereby
enhancing patrol effectiveness.

The object detection and classification module is a key
component that enables the UAV surveillance system to
operate accurately, efficiently, and adaptively under
various environmental conditions.

Stage 4: System Integration

The system is implemented as a ground control
station with a user-friendly interface, integrating all
necessary functionalities to coordinate and monitor UAV
operations during surveillance missions. This stage
involves building a comprehensive management
interface thatincludes the following capabilities: defining
surveillance areas, computing optimal UAV trajectories,
configuring object classes for recognition, monitoring
UAV positions, performing real-time object detection and
classification, and issuing alerts when targets are
identified.

5. SIMULATION RESULTS AND DISCUSSION

The overall system was developed in the Visual Studio
2022 environment, with the core modules implemented
in Python. The tools for simulating UAV control were
configured within Windows environment equipped with
WSL2 (Windows Subsystem for Linux).

Figure 4 shows the main interface of the system with
a connected quadrotor-type UAV simulated in AirSim,
ready for patrol deployment. Figure 5 displays the
interface for defining the surveillance area, using an
interactive map provided by QGroundControl. The
operator can intuitively designate the patrol region with
minimal effort by simply clicking on the map.

Once the surveillance area is defined, the system
proceeds to compute the optimal coverage path for the
UAV. Based on the optimal coverage path planning
model, the system generates energy-efficient flight
trajectories that fully cover the patrol area for each UAV.
Figure 6 illustrates the computed optimal path, which has
been transferred to the UAV control environment and is
ready for mission execution.
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Figure 7 shows the interface for configuring the object
classes to be detected. The ground control station allows
the user to select and configure the types of objects of
interest, enabling the detection and classification module
to focus on the specific requirements of the mission.
Depending on the surveillance objectives and the
training dataset used, the list of detectable object classes
can be flexibly modified or expanded. As a result, the
system is not limited to the eight example categories
illustrated; additional classes can be integrated if
appropriate training data is available and the model is
fine-tuned accordingly. This flexibility allows the system
to adapt to a wide range of surveillance scenarios,
including security, traffic monitoring, emergency
response, and urban management.

The ground control interface provides an intuitive
map-based visualization of the UAV's current position
and status, enabling operators to effectively monitor the
flight progress and any events that arise during the patrol
mission. Figure 8 presents the system'’s visual interface for
tracking the simulated UAV. With real-time object
detection and classification functionality, the system
continuously receives image streams transmitted from
the UAV throughout the patrol flight. These frames are
immediately processed by the fine-tuned YOLOv10
model, allowing for instant identification and
categorization of objects as soon as they appear within
the UAV's field of view.

The recognition results are visually displayed on the
control interface (Figure 9), where each detected object is
enclosed within a bounding box and labeled with its
corresponding class. Simultaneously, the system triggers
an audio alert to draw the operator’s attention, enabling
rapid situation awareness and timely response. This alert
mechanism is particularly valuable in missions that
require quick reactions, such as security surveillance,
intrusion detection, or tracking suspicious activities.

6. CONCLUSION

This paper has introduced an artificial intelligence-
enabled UAV-based surveillance system that
incorporates two fundamental capabilities: optimal
coverage path planning and real-time object detection
and classification from aerial imagery. The proposed
system is architected as a ground control station that
integrates a Mixed-Integer Linear Programming (MILP)
model to optimize flight trajectories, alongside a fine-
tuned YOLOV10 deep learning model tailored for object
recognition in domain-specific surveillance contexts.
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Simulation-based experimental results validate the
system'’s operational stability, practical deployability, and
suitability for practical applications in terms of
performance efficiency, interface intuitiveness, and
implementation feasibility. The integration of state-of-
the-art  simulation  platforms  including  PX4,
QGroundControl, AirSim, and Unreal Engine has
significantly accelerated the development and validation
cycle, enabling thorough testing prior to real-world UAV
deployment. Future work will focus on enhancing the
system’s scalability and adaptability, particularly through
the coordination of multiple UAVs operating
simultaneously in dynamic environments. Additionally,
efforts will be directed toward embedding lightweight Al
models capable of executing inference tasks directly
onboard the UAVs, thereby ensuring robust performance
under constrained communication and computational
resources.
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