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ABSTRACT 

The rapid growth of IoT devices has improved connectivity but has also 
made them vulnerable to attacks due to limited resources. The Intrusion 
Detection System (IDS) is one of the effective ways, where machine learning-
based defense mechanisms are used for early detection. Due to the limitations 
of resources and computing in IoT devices, optimizing IDS plays a crucial role. 
The optimization process includes many phases, in which the preprocessing 
phase helps reduce the dimensions of features and speed up input processing. 
In this paper, we utilized the Edge-IIoT dataset to evaluate two feature 
reduction techniques, including feature selection (FS) and feature extraction 
(FE) for machine learning models, that reduce the complexity of machine 
learning. We used Pearson Correlation (PCC) and Principal Component 
Analysis (PCA) algorithms for FS and FE, respectively. As a result, we found 
that FE is better than FS, with small features and stability, but it takes more 
time for training compared to the other one. In contrast, FS is better than FE 
when increasing the number of features, which results in outperformance in 
accuracy and requires less time to reduce features. 
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1. INTRODUCTION 

The Internet of Things [11] (IoT) has emerged in recent 
years, IoT devices have rapidly evolved into a wide range 
of types, including sensors, smart cameras, smart 
televisions, and other household devices. These devices 
are interconnected to create a massive network that 
exchanges trillions of data points. Indeed, most IoT 

devices have limited resources so that this vulnerability 
makes them susceptible to security issues, such as DDoS, 
SQL injections, malware attacks, etc. 

Many solutions have been explored and implemented 
to protect IoT systems. One such solution is a Network 
Intrusion Detection System (NIDS) [12]. NIDS can detect 
abnormal intrusions in IoT networks and prevent 
malicious access early. NIDS relies on various methods, 
such as statistics-based, pattern-based, etc. Among them, 
Machine Learning and Deep Learning stand out as state-
of-the-art (SOTA) approaches. Most machine learning 
models are based on available datasets. However, a 
common weakness of these datasets is the lack of proper 
data cleaning, which results in redundant information 
and features. Many researchers have investigated this 
problem extensively and proposed various methods that 
can generally be categorized into two types: feature 
selection (FS) techniques and feature extraction (FE) 
techniques. In fact, most studies focus only on FS or FE 
techniques individually and do not evaluate them 
comprehensively within a specific case study. 

For evaluating and comparing purposes, we will 
implement a framework in which FE and FS will be 
compared by using a the IIoT traffic dataset, named 
Edge-IIoT dataset [6]. Overall, our findings show that FE 
performs better than FS when working with a smaller 
number of features and remains stable as the number of 
features increases. However, the FE requires more time 
for the training process. In contrast, the FS outperforms 
FE in terms of accuracy when using a larger number of 
features and requires less training time. These 
evaluations are conducted using well-known machine 
learning models, including K-Nearest Neighbors (KNN), 
Decision Tree (DT), Random Forest (RF), Light Gradient-
Boosting Machine (LightGBM) and Multi Layer 
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Perceptron (MLP). Performance is assessed using 
common metrics such as accuracy, precision, F1 score, 
and recall. The key contributions of this research are as 
follows: 

- Deploy a framework for data prepocessing on Edge-
IIoT dataset. 

- Comparing and evaluating two feature reduction 
methods including FS and FE techniques. 

The structure of this paper includes the following 
sections: Section 2. Related Works will investigate similar 
topics, Section 3. Methodology presents the methods 
used for evaluation; Section 4. Implementation and 
Evaluation details the configurations, model execution, 
and performance comparison of the two approaches; and 
finally, Section 5. Conclusion will summarize the findings 
and discuss future work. 

2. RELATED WORKS 

In terms of feature selection (FS) techniques, various 
methods have been employed to enhance the 
performance of intrusion detection systems (IDS). In 
paper [8], the authors utilized correlation and mutual 
information to select optimal features for addressing the 
challenge of continuous input features and discrete 
target values. Their approach achieved a high detection 
accuracy of 99.9% for DDoS attacks. Similarly, in paper [9], 
the authors analyzed the UNSW-NB15 Dataset [13] and 
applied the XGBoost-based feature selection method. 
This method led to an accuracy improvement, from 
88.13% to 90.85%, for the binary classification scheme. 
Moreover, paper [1] explored the application of decision 
tree classifiers on reduced feature sets for building an IDS. 
The results indicated that selecting reduced attributes 
through a novel feature selection system contributed to 
better performance and a computationally efficient IDS. 
These studies highlight the importance of effective 
feature selection in developing robust and efficient IDS. 
However, in the context of the Internet of Things (IoT), 
resource constraints such as limited processing power, 
memory, and energy pose significant challenges for 
directly applying these feature selection methods. 

In terms of feature extraction (FE) techniques, 
methods like Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA), and neural 
network-based Autoencoders (AE) have been widely 
used to reduce dimensionality in Network Intrusion 
Detection Systems (NIDS). In [16], the authors 
employed PCA for feature reduction, achieving a 

performance time of 3.24 minutes, an accuracy of 
96.78%, and an error rate of 0.21%. Similarly, [4] 
reported high performance with PCA while 
maintaining lower feature dimensions. In [2], 
Autoencoders reduced features to a 3-dimensional 
latent space (90% compression), with minimal impact 
on detection accuracy. LDA has also been applied to 
significantly reduce computational complexity in NIDS, 
as shown in [14]. Furthermore, hybrid approaches that 
combine multiple feature extraction methods, such as 
the one described in [3], have demonstrated greater 
robustness compared to single-method techniques. 

While existing studies focus on FS or FE techniques, 
they often lack an analysis of their impact on model 
performance, use outdated datasets, and overlook 
resource constraints in IoT scenarios. Our research 
addresses these gaps by comparing Pearson correlation 
and PCA as lightweight methods on the Edge-IIoT 
dataset. In this study, we focus on well-known machine 
learning models such as K-Nearest Neighbors (KNN), 
Decision Trees (DT), and Random Forest (RF). The next 
section will detail this approach. 

3. METHODOLOGY 

In this section, we will evaluate the FS and FE 
techniques using the framework as shown in Figure 1. 
These methods will be evaluated and compared based on 
multi-class classification model performance. The 
pipeline process of the framework is divided into three 
sections: 

Phase 1: Data pre-processing 

In this phase, we will clean the dataset by removing 
missing values, eliminating duplicates, dropping 
redundant columns, and encoding for non-numerical 
data as described in [6]. 

Phase 2: Feature reduction 

In this phase, the FS and FE techniques, including 
Pearson’s Correlation Coefficient (PCC) and PCA will be 
applied to reduce the feature number. This step provides 
in depth insight into the impact of each method on the 
Edge-IIoT dataset. 

Phase 3: Classification Modeling 

After going through the feature reduction phase, the 
data will be split into training and test sets. We will use 
several well-known models, such as KNN, DT, RF, 
LightGBM and MLP to evaluate the performance of the 
feature reduction techniques. 
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Figure 1. Framework for comparison Feature Selection and Feature 
Extraction techniques 

Feature Selection 

The Pearson’s Correlation Coefficient (PCC) method is 
a straightforward approach for assessing linear 
correlations between features, allowing us to evaluate 
feature interdependencies. By identifying features with 
high correlation coefficients, we aim to remove 
redundant features that contribute little additional 
information to the model. This process relies on a 
correlation matrix. To calculate PCC between two 
features, we use [17]: 

PCC(f�, f�) =
cov(f�, f�)

σ�� × σ��

 (1) 

In (1), cov and σ represent the covariance and 
standard deviation, respectively. To select important 
features, we will choose many threshold values 
increasingly. As explained above, features that have high 
correlation values will be removed because they 
contribute less information than the other ones. The PCC 
can be positive or negative values, so we will choose 
thresholds that range values from negative to positive 
threshold symmetrically.  

Feature Extraction 

Among various algorithms for feature extraction, PCA 
[7], Autoencoders (AE) [5], and Linear Discriminant 
Analysis (LDA) [15] are popular choices. However, PCA 
stands out as it adapts well to IoT resource constraints 

and is computationally efficient, making it faster to 
calculate compared to other methods. 

With matrix � representing a dataset and  �� as the 
normalized form of �, the correlation matrix is calculated 
by the following formulas 

� =
1

N
  ����� (2) 

In (2), N denoted number of elements in � and  �� is a 
normalized matrix of  ��� vectors calculated by following 
formulas 

�� =
1

N
� �� (3) 

Here,  �� represents the mean of N vectors �� , and  ��� 
is 

��� = �� − �� (4) 

In (4),  �� is the normalization of  � by subtracting the 
mean  ��.  

From the correlation matrix, we compute the 
eigenvectors and eigenvalues of �. By sorting the 
eigenvalues in decreasing order, we obtain the matrix �. 
From �, we select � eigenvectors corresponding to the 
largest eigenvalues to form the new dimensions in the 
transformed space. The matrix � is then computed as the 
projection of � onto this new space with � dimensions, 
preserving the most significant information 

� = ��
��� (5) 

Here, the � dataset is converted to � in a new space 
and the remaining � features. 
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4. IMPLEMENTATION AND EVALUATION 

4.1. Implementation 

Setup  

The framework in Figure 1 will be implemented on 
Kaggle, leveraging its powerful processing and 
collaborative tools for efficient execution and evaluation. 
We will assess model performance in terms of Accuracy, 
Precision, F1-Score, and Recall. We measure the time 
taken by Feature Selection and Feature Extraction 
processes to evaluate their impact. 

We use Edge-IIoT dataset [6] to evaluate two features 
reduction techniques. The Edge-IIoT dataset is a 
comprehensive collection from over ten IoT device types, 
integrated with various technology stacks, including 
Cloud, Edge, Fog Computing, SDN, Blockchain, and 
multiple protocols. It captures fourteen types of attacks, 
grouped into five main categories: DoS/DDoS, 
Information Gathering, Man-in-the-Middle, Injection, and 
Malware, making it a realistic resource for cybersecurity 
research, as shown in Table 1. This dataset includes two 
folders for evaluating ML and DL models. In this study, we 
focus on the ML dataset, a smaller subset of the DL 
dataset, to reduce analysis time and streamline 
evaluation. 

Table 1. Edge-IIoT summary of records [6] 

IoT traffic Class Records Total 

Normal Normal 11,223,940 11,223,940 

Attack 

Backdoor attack 24,862 

9,728,708 

DDoS_HTTP attack 229,022 

DDoS_ICMP attack 2,914,354 

DDoS_TCP attack 2,020,120 

DDoS_UDP attack 3,201,626 

Fingerprinting attack 1,001 

MITM attack 1,229 

Password attack 1,053,385 

Port_Scanning attack 22,564  

Ransomware attack 10,925 

 

SQL_injection attack 51,203 

Uploading attack 37,636 

Vulnerability_scanner 
attack 

145,869 

XSS attack 15,915 

Total     2,095,2648 

We utilized a diverse set of five machine learning 
models in our study, including DT, KNN, RF, LightGBM, 
and MLP. The specific configurations and settings for 
each model after fine-turning, including 
hyperparameters, are comprehensively summarized in 
Table 2. 

Table 2. Configuration Model 

Model Parameters 

KNN n_neighbors=4 

DT random_state=0, max_depth=14 

RF random_state=0, max_depth=14 

LightGBM learning_rate=0.02, max_depth=10, num_leaves=50 

MLP 
hidden_layer_sizes=64, batch_size=512, random_state=0, 
max_iter=100 

Feature selected by threshold correlation 

The features selected by the Feature Selection 
method will be chosen based on a specific threshold. 
Figure 2 presents the Pearson Correlation Coefficient 
(PCC) of each feature, excluding those with NaN values, as 
discussed in Section 3. This visualization helps identify 
the features that meet the correlation threshold criteria 
and are thus suitable for selection, ensuring that only the 
most relevant features are retained. Detail number of 
selected features and chosen thresholds in Table 3. 

We can see that features of TCP and HTTP protocols 
contribute a lot of information based on PCC value, 
especially the HTTP fields such as version and status. Most 
of the features of the MQTT protocol obtain high PCC 
values, which do not contribute good information for the 
model. 

Table 3. Selected features by Feature Selection 

Range No. Selected Features 

[−0.01, 0.01] 17 

[−0.015, 0.015] 23 

[−0.03, 0.03] 53 

[−0.05, 0.05] 67 

NaN 74 

Feature selected by PCA 

In this approach, we extracted the same number of 
features as in the Feature Selection method for a 
meaningful comparison. After applying PCA to the Edge-
IIoT dataset, we generated a chart illustrating the new 
features in the reduced dimensional space, as shown in 
Figures 3 and 4. 
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Figure 2. Correlation Mean for Each Feature 

 
Figure 3. Explained Variance 

In Figure 3, the new features are sorted by decreasing 
explained variance ratio. As observed, the most 
important features appear 50 first, as they contribute 
more significant information compared to the others. 
Mapping to the cumulative explained variance ratio 
shown in Figure 4, in 50 first features, the cumulative 
explained variance obtained 99% information about the 
dataset. 

 
Figure 4. Culmulative Explain Variance 

4.2. Evaluation 

After fitting two feature reduction methods on five 
models, we summary results in Table 4 to Table 7. The 
Acc, Pre, Re and F1 stand for Accuracy, Precision, Recall 
and F1-Score, respectively. We gradually increased the 
number of features to evaluate the impact and 
performance of each dimensionality reduction method. 
As shown in Table 4, with 17 features, Feature Extraction 
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(FE) demonstrates significantly better performance 
compared to Feature Selection (FS). The MLP model 
achieved the best results, with an accuracy of 81.58%, 
outperforming FS methods by over 40%. Metrics such as 
Precision, Recall, and F1-Score were also notably higher, 
reflecting FE's ability to preserve critical information for 
classification tasks. Additionally, FE reduced the 
dimensionality faster than FS, showcasing its efficiency in 
preprocessing. However, FS exhibited quicker model 
training times compared to FE, making FS more suitable 
for scenarios where training time is a critical factor. 

Table 4. Results with 17 features 

  
Acc 
(%) 

Pre 
(%) 

Re 
(%) 

F1 
(%) 

Feature 
Reduction 

Time (s) 

Training 
Time (s) 

Feature Selection 

DT 50.85 67.4 48.68 46.55 

2.43 

0.18 

RF 51.57 72.94 49.56 48.15 7.89 

KNN 63.07 70.63 62.56 61.84 0.014 

LightGBM 75.7 79.66 75.7 75.85 18.76 

MLP 41.95 39.36 41.95 32.15 51.12 

Feature Extraction 

DT 81.18 82.67 78.45 78.64 

1.65 

3.43 

RF 80.8 81.88 77.93 78.48 69.21 

KNN 79.81 77.35 75.97 76.42 0.015 

LightGBM 81.55 79.9 79.81 79.73 0.02 

MLP 81.58 84.21 81.58 81.58 38.65 

Table 5. Result with 23 features 

  Acc (%) Pre (%) Re (%) F1 (%) 
Feature 

Reduction 
Time (s) 

Training 
Time (s) 

Feature Selection 

DT 79.38 85.23 78.45 78.76 

2.43 

0.23 

RF 79.47 84.98 78.55 78.86 8.52 

KNN 80.42 80.98 78.01 78.26 0.014 

LightGBM 84.57 87.37 84.57 84.22 19.36 

MLP 53.05 64.43 53.05 48.22 55.15 

Feature Extraction 

DT 81.57 85.58 78.51 78.23 

1.98 

4.65 

RF 81.25 82.3 78.79 79.06 67.98 

KNN 79.97 78.28 77.44 77.72 0.015 

LightGBM 81.62 83.96 81.61 81.58 18.08 

MLP 80.99 86.33 80.99 80.41 32.72 

When the number of features increased to 23, as 
shown in Table 5, FS demonstrated remarkable 
improvements in model performance compared to its 
results with 17 features. Notably, the performance 
metrics of all models increased with FS as the number of 
features grew. This result highlights FS's ability to better 
utilize additional features for classification as the feature 
set expands. In contrast, FE showed stability in these 
metrics, indicating that its performance gains plateaued 
with the addition of more features. Regarding 
dimensionality reduction time, FE remained about 1 
second faster than FS, reaffirming its preprocessing 
efficiency. However, the training time for FE was 
considerably longer, with RF requiring an average of 68 
seconds for training. 

As the number of features increased to 53, 67, and 
eventually 74 (full of features), corresponding to Tables 6, 
7, and 8, FS performance improved significantly. The 
accuracy of FS models reached up to 94% (LightGBM), with 
Precision peaking at approximately 93%. Recall and F1-
Score also saw substantial improvements, reaching nearly 
90%. This demonstrates FS's ability to leverage a larger 
feature set effectively, particularly with LightGBM, which 
consistently performed best among FS models. 
Conversely, FE metrics remained relatively stable, showing 
minimal improvement even compared to scenarios with 
fewer features, such as 17 or 23, suggesting diminishing 
returns for FE as the feature set grows. While FE continued 
to have faster dimensionality reduction times than FS, this 
advantage was outweighed by its significantly longer 
training times, particularly for RF, which required over 108 
seconds with the full feature set. These findings highlight 
FS as a more practical choice when working with larger 
feature sets, particularly in time-sensitive applications, 
while FE remains advantageous for small feature subsets 
where its efficiency and performance benefits are more 
pronounced. 

Table 6. Results with 53 features 

  
Acc 
(%) 

Pre 
(%) 

Re 
(%) 

F1 
(%) 

Feature 
Reduction 

Time (s) 

Training 
Time (s) 

Feature Selection 

DT 89.38 92.31 86.43 87.66 

2.51 

0.87 

RF 89.64 91.41 87.35 88.27 13.95 

KNN 77.57 75.78 74.91 75.16 0.017 

LightGBM 91.75 92.88 91.75 91.7 24.13 

MLP 77.97 80.62 77.97 77.75 63.25 
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Feature Extraction 

DT 81.85 84.49 79.4 79.47 

2.93 

8.94 

RF 81.86 83.73 79.45 79.69 107.63 

KNN 79.81 78.26 77.3 77.62 0.017 

LightGBM 81.81 84.07 81.81 81.81 36.78 

MLP 81.51 84.7 81.51 81.55 34.78 

Table 7. Results with 67 features 

  
Acc 
(%) 

Pre 
(%) 

Re 
(%) 

F1 
(%) 

Feature 
Reduction 

Time (s) 

Training 
Time (s) 

Feature Selection 

DT 91.4 93.71 89.22 90.18 

2.61 

1.11 

RF 91.73 92.41 89.59 90.42 15.89 

KNN 79.03 77.54 76.54 76.89 0.018 

LightGBM 93.68 94.36 93.68 93.7 25.41 

MLP 81.58 84.21 81.58 81.58 64.97 

Feature Extraction 

DT 81.85 84.54 79.39 79.48 

0.81 

9.18 

RF 81.91 83.85 79.55 79.8 108.07 

KNN 79.81 78.26 77.31 77.63 0.018 

LightGBM 82.84 84.74 82.84 82.86 44.81 

MLP 81.67 86.94 81.67 80.96 37.38 

Table 8. Results with full of features 

  
Acc 
(%) 

Pre 
(%) 

Re 
(%) 

F1 
(%) 

Feature 
Reduction 

Time (s) 

Training 
Time (s) 

Feature Selection 

DT 91.41 93.65 89.12 90.13 

2.64 

1.13 

RF 91.08 91.77 88.98 89.84 18.25 

KNN 79.81 78.25 77.3 77.62 0.019 

LightGBM 93.72 94.38 93.72 93.74 24.55 

MLP 81.24 85.32 81.24 80.72 67.26 

Feature Extraction 

DT 81.85 84.54 79.43 79.51 

0.86 

9.42 

RF 81.88 83.79 79.5 79.74 106.1 

KNN 79.81 78.26 77.31 77.63 0.019 

LightGBM 82.83 84.73 82.83 82.86 48.95 

MLP 81.5 84.01 81.5 81.5 38.17 

When using FS with a small number of features, critical 
information is often discarded, leading to poorer 

performance metrics. In contrast, with FE, specifically 
PCA, the transformation ensures that key information is 
concentrated in the first few components. As shown in 
Figures 3 and 4, most of the information is captured 
within the first 47 components, with the highest 
concentration in the first three components. This explains 
the stability in performance metrics for FE as the number 
of features increases, while FS exhibits significant 
variability due to the inclusion of more complete 
information. 

Furthermore, it is important to note that PCA 
transforms the data into a new dimensional space, which 
can result in some loss of information. This may account 
for the accuracy plateauing at around 81% in our study. 
These observations align with the findings reported by 
the authors in [10] demonstrating the robustness of their 
conclusions when applied to the Edge-IIoT dataset in our 
experiments. The summarized observations and insights 
when analyzing with Edge-IIoT dataset are presented in 
the comparative Table 9. 

Table 9. Summary in comparison between FS and FE 

No Content FS FE 

1 Higher accuracy when a small number of features    

2 Higher accuracy when increasing features    

3 Lower time for reduction features    

4 Lower time for training model    

5 
Less sensitive to the number of selected/extracted 
features 

   

6 
Greater potential for performance improvement with 
fewer features. 

   

7 Effectiveness in High-Dimensional Data    

8 
Effective in Computational Complexity During 
Reduction 

   

9 Suitability for Real-Time Systems    

5. CONCLUSION 

This study evaluated FS and FE techniques using the 
Edge-IIoT dataset to assess their effectiveness in an IoT 
Intrusion Detection System. Our findings reveal that with 
fewer features, FE achieves higher accuracy than FS, 
which tends to lose accuracy in such cases. Conversely, FS 
performs better with larger feature sets, while FE 
accuracy drops under the same conditions. Notably, FE 
maintains stability as the number of features increases, 
demonstrating its robustness compared to FS. 

We also observed that training time increases 
significantly when using PCA for FE compared to using 
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PCC-based Feature Selection, highlighting the trade-off 
between computational efficiency and model stability. 

Future work will explore hybrid methods that 
combine FS and FE, as well as investigate new feature 
reduction algorithms designed to better accommodate 
the computational limitations of IoT devices. This 
approach aims to optimize both efficiency and accuracy, 
enabling more secure and resource-efficient IoT 
networks and operating guide. The method approach in 
this research is multi-purposeful and can be used in all 
cases of electrical discharge drilling processes with 
different materials. 
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