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ABSTRACT

The rapid growth of loT devices has improved connectivity but has also
made them vulnerable to attacks due to limited resources. The Intrusion
Detection System (IDS) is one of the effective ways, where machine learning-
based defense mechanisms are used for early detection. Due to the limitations
of resources and computing in loT devices, optimizing IDS plays a crucial role.
The optimization process includes many phases, in which the preprocessing
phase helps reduce the dimensions of features and speed up input processing.
In this paper, we utilized the Edge-lloT dataset to evaluate two feature
reduction techniques, including feature selection (FS) and feature extraction
(FE) for machine learning models, that reduce the complexity of machine
learning. We used Pearson Correlation (PCC) and Principal Component
Analysis (PCA) algorithms for FS and FE, respectively. As a result, we found
that FE is better than FS, with small features and stability, but it takes more
time for training compared to the other one. In contrast, FS is better than FE
when increasing the number of features, which results in outperformance in
accuracy and requires less time to reduce features.
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1. INTRODUCTION

The Internet of Things [11] (IoT) has emerged in recent
years, loT devices have rapidly evolved into a wide range
of types, including sensors, smart cameras, smart
televisions, and other household devices. These devices
are interconnected to create a massive network that
exchanges trillions of data points. Indeed, most loT
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devices have limited resources so that this vulnerability
makes them susceptible to security issues, such as DDoS,
SQL injections, malware attacks, etc.

Many solutions have been explored and implemented
to protect loT systems. One such solution is a Network
Intrusion Detection System (NIDS) [12]. NIDS can detect
abnormal intrusions in loT networks and prevent
malicious access early. NIDS relies on various methods,
such as statistics-based, pattern-based, etc. Among them,
Machine Learning and Deep Learning stand out as state-
of-the-art (SOTA) approaches. Most machine learning
models are based on available datasets. However, a
common weakness of these datasets is the lack of proper
data cleaning, which results in redundant information
and features. Many researchers have investigated this
problem extensively and proposed various methods that
can generally be categorized into two types: feature
selection (FS) techniques and feature extraction (FE)
techniques. In fact, most studies focus only on FS or FE
techniques individually and do not evaluate them
comprehensively within a specific case study.

For evaluating and comparing purposes, we will
implement a framework in which FE and FS will be
compared by using a the lloT traffic dataset, named
Edge-lloT dataset [6]. Overall, our findings show that FE
performs better than FS when working with a smaller
number of features and remains stable as the number of
features increases. However, the FE requires more time
for the training process. In contrast, the FS outperforms
FE in terms of accuracy when using a larger number of
features and requires less training time. These
evaluations are conducted using well-known machine
learning models, including K-Nearest Neighbors (KNN),
Decision Tree (DT), Random Forest (RF), Light Gradient-
Boosting Machine (LightGBM) and Multi Layer
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Perceptron (MLP). Performance is assessed using
common metrics such as accuracy, precision, F1 score,
and recall. The key contributions of this research are as
follows:

- Deploy a framework for data prepocessing on Edge-
lloT dataset.

- Comparing and evaluating two feature reduction
methods including FS and FE techniques.

The structure of this paper includes the following
sections: Section 2. Related Works will investigate similar
topics, Section 3. Methodology presents the methods
used for evaluation; Section 4. Implementation and
Evaluation details the configurations, model execution,
and performance comparison of the two approaches; and
finally, Section 5. Conclusion will summarize the findings
and discuss future work.

2. RELATED WORKS

In terms of feature selection (FS) techniques, various
methods have been employed to enhance the
performance of intrusion detection systems (IDS). In
paper [8], the authors utilized correlation and mutual
information to select optimal features for addressing the
challenge of continuous input features and discrete
target values. Their approach achieved a high detection
accuracy of 99.9% for DDoS attacks. Similarly, in paper [9],
the authors analyzed the UNSW-NB15 Dataset [13] and
applied the XGBoost-based feature selection method.
This method led to an accuracy improvement, from
88.13% to 90.85%, for the binary classification scheme.
Moreover, paper [1] explored the application of decision
tree classifiers on reduced feature sets for building an IDS.
The results indicated that selecting reduced attributes
through a novel feature selection system contributed to
better performance and a computationally efficient IDS.
These studies highlight the importance of effective
feature selection in developing robust and efficient IDS.
However, in the context of the Internet of Things (loT),
resource constraints such as limited processing power,
memory, and energy pose significant challenges for
directly applying these feature selection methods.

In terms of feature extraction (FE) techniques,
methods like Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and neural
network-based Autoencoders (AE) have been widely
used to reduce dimensionality in Network Intrusion
Detection Systems (NIDS). In [16], the authors
employed PCA for feature reduction, achieving a
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performance time of 3.24 minutes, an accuracy of
96.78%, and an error rate of 0.21%. Similarly, [4]
reported high performance with PCA while
maintaining lower feature dimensions. In [2],
Autoencoders reduced features to a 3-dimensional
latent space (90% compression), with minimal impact
on detection accuracy. LDA has also been applied to
significantly reduce computational complexity in NIDS,
as shown in [14]. Furthermore, hybrid approaches that
combine multiple feature extraction methods, such as
the one described in [3], have demonstrated greater
robustness compared to single-method techniques.

While existing studies focus on FS or FE techniques,
they often lack an analysis of their impact on model
performance, use outdated datasets, and overlook
resource constraints in loT scenarios. Our research
addresses these gaps by comparing Pearson correlation
and PCA as lightweight methods on the Edge-lloT
dataset. In this study, we focus on well-known machine
learning models such as K-Nearest Neighbors (KNN),
Decision Trees (DT), and Random Forest (RF). The next
section will detail this approach.

3. METHODOLOGY

In this section, we will evaluate the FS and FE
techniques using the framework as shown in Figure 1.
These methods will be evaluated and compared based on
multi-class classification model performance. The
pipeline process of the framework is divided into three
sections:

Phase 1: Data pre-processing

In this phase, we will clean the dataset by removing
missing values, eliminating duplicates, dropping
redundant columns, and encoding for non-numerical
data as described in [6].

Phase 2: Feature reduction

In this phase, the FS and FE techniques, including
Pearson’s Correlation Coefficient (PCC) and PCA will be
applied to reduce the feature number. This step provides
in depth insight into the impact of each method on the
Edge-lloT dataset.

Phase 3: Classification Modeling

After going through the feature reduction phase, the
data will be split into training and test sets. We will use
several well-known models, such as KNN, DT, RF,
LightGBM and MLP to evaluate the performance of the
feature reduction techniques.
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Figure 1. Framework for comparison Feature Selection and Feature
Extraction techniques

Feature Selection

The Pearson'’s Correlation Coefficient (PCC) method is
a straightforward approach for assessing linear
correlations between features, allowing us to evaluate
feature interdependencies. By identifying features with
high correlation coefficients, we aim to remove
redundant features that contribute little additional
information to the model. This process relies on a
correlation matrix. To calculate PCC between two
features, we use [17]:

cov(fy,f,)
PCC(f;, ;) = ———
(1, £2) or, X of, (1

In (1), cov and o represent the covariance and
standard deviation, respectively. To select important
features, we will choose many threshold values
increasingly. As explained above, features that have high
correlation values will be removed because they
contribute less information than the other ones. The PCC
can be positive or negative values, so we will choose
thresholds that range values from negative to positive
threshold symmetrically.

Feature Extraction

Among various algorithms for feature extraction, PCA
[71, Autoencoders (AE) [5], and Linear Discriminant
Analysis (LDA) [15] are popular choices. However, PCA
stands out as it adapts well to loT resource constraints

44 | HaUl Journal of Science and Technology

and is computationally efficient, making it faster to
calculate compared to other methods.

With matrix X representing a dataset and X as the
normalized form of X, the correlation matrix is calculated
by the following formulas

S=— XXT (2)

In (2), N denoted number of elements in X and Xis a
normalized matrix of X, vectors calculated by following
formulas

- %ZX 3)

Here, X represents the mean of N vectors x,,, and X,

i

R, =x,—X (4)
In (4), X is the normalization of x by subtracting the
mean X.

From the correlation matrix, we compute the
eigenvectors and eigenvalues of S. By sorting the
eigenvalues in decreasing order, we obtain the matrix U.
From U, we select K eigenvectors corresponding to the
largest eigenvalues to form the new dimensions in the
transformed space. The matrix Z is then computed as the
projection of X onto this new space with K dimensions,
preserving the most significant information

Z=UgX (5)
Here, the X dataset is converted to Z in a new space
and the remaining K features.
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4. IMPLEMENTATION AND EVALUATION
4.1. Implementation
Setup

The framework in Figure 1 will be implemented on
Kaggle, leveraging its powerful processing and
collaborative tools for efficient execution and evaluation.
We will assess model performance in terms of Accuracy,
Precision, F1-Score, and Recall. We measure the time
taken by Feature Selection and Feature Extraction
processes to evaluate their impact.

We use Edge-lloT dataset [6] to evaluate two features
reduction techniques. The Edge-lloT dataset is a
comprehensive collection from over ten loT device types,
integrated with various technology stacks, including
Cloud, Edge, Fog Computing, SDN, Blockchain, and
multiple protocols. It captures fourteen types of attacks,
grouped into five main categories: DoS/DDoS,
Information Gathering, Man-in-the-Middle, Injection, and
Malware, making it a realistic resource for cybersecurity
research, as shown in Table 1. This dataset includes two
folders for evaluating ML and DL models. In this study, we
focus on the ML dataset, a smaller subset of the DL

dataset, to reduce analysis time and streamline
evaluation.
Table 1. Edge-lloT summary of records [6]
loT traffic Class Records Total

Normal | Normal 11,223,940 | 11,223,940
Backdoor attack 24,862
DDoS_HTTP attack 229,022
DDoS_ICMP attack 2,914,354
DDoS_TCP attack 2,020,120
DDoS_UDP attack 3,201,626 PTII0
Fingerprinting attack 1,001
MITM attack 1,229

Attack | Password attack 1,053,385
Port_Scanning attack 22,564
Ransomware attack 10,925
SQL_injection attack 51,203
Uploading attack 37,636
l;/tutlanj(rability_scanner 145,869
XSS attack 15,915

Total 2,095,2648
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We utilized a diverse set of five machine learning
models in our study, including DT, KNN, RF, LightGBM,
and MLP. The specific configurations and settings for
each model after fine-turning, including
hyperparameters, are comprehensively summarized in
Table 2.

Table 2. Configuration Model

Model Parameters
KNN n_neighbors=4
DT random_state=0, max_depth=14
RF random_state=0, max_depth=14

LightGBM | learning_rate=0.02, max_depth=10, num_leaves=50

hidden_layer_sizes=64, batch_size=512, random_state=0,
MLP max_iter=100

Feature selected by threshold correlation

The features selected by the Feature Selection
method will be chosen based on a specific threshold.
Figure 2 presents the Pearson Correlation Coefficient
(PCCQ) of each feature, excluding those with NaN values, as
discussed in Section 3. This visualization helps identify
the features that meet the correlation threshold criteria
and are thus suitable for selection, ensuring that only the
most relevant features are retained. Detail number of
selected features and chosen thresholds in Table 3.

We can see that features of TCP and HTTP protocols
contribute a lot of information based on PCC value,
especially the HTTP fields such as version and status. Most
of the features of the MQTT protocol obtain high PCC
values, which do not contribute good information for the
model.

Table 3. Selected features by Feature Selection

Range No. Selected Features
[—0.01,0.01] 17
[—0.015,0.015] 23
[—0.03,0.03] 53
[—0.05, 0.05] 67
NaN 74

Feature selected by PCA

In this approach, we extracted the same number of
features as in the Feature Selection method for a
meaningful comparison. After applying PCA to the Edge-
lloT dataset, we generated a chart illustrating the new
features in the reduced dimensional space, as shown in
Figures 3 and 4.
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Figure 3. Explained Variance

In Figure 3, the new features are sorted by decreasing
explained variance ratio. As observed, the most
important features appear 50 first, as they contribute
more significant information compared to the others.
Mapping to the cumulative explained variance ratio
shown in Figure 4, in 50 first features, the cumulative
explained variance obtained 99% information about the
dataset.
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Principal Component
Figure 4. Culmulative Explain Variance
4.2. Evaluation

After fitting two feature reduction methods on five
models, we summary results in Table 4 to Table 7. The
Acc, Pre, Re and F1 stand for Accuracy, Precision, Recall
and F1-Score, respectively. We gradually increased the
number of features to evaluate the impact and
performance of each dimensionality reduction method.
As shown in Table 4, with 17 features, Feature Extraction
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(FE) demonstrates significantly better performance
compared to Feature Selection (FS). The MLP model
achieved the best results, with an accuracy of 81.58%,
outperforming FS methods by over 40%. Metrics such as
Precision, Recall, and F1-Score were also notably higher,
reflecting FE's ability to preserve critical information for
classification tasks. Additionally, FE reduced the
dimensionality faster than FS, showcasing its efficiency in
preprocessing. However, FS exhibited quicker model
training times compared to FE, making FS more suitable
for scenarios where training time is a critical factor.

Table 4. Results with 17 features

Acc | Pre | Re | F1 RZ:T:::“ Training
(%) | (%) | (%) | (%) Time (s) Time (s)
Feature Selection
DT 50.85 | 67.4 |48.68 | 46.55 0.18
RF 51.57 | 72.94 | 49.56 | 48.15 7.89
KNN 63.07 | 70.63 | 62.56 | 61.84 2.43 0.014
LightGBM | 75.7 | 79.66 | 75.7 | 75.85 18.76
MLP 41.95 | 39.36 | 41.95 | 32.15 51.12
Feature Extraction
DT 81.18 | 82.67 | 78.45 | 78.64 3.43
RF 80.8 | 81.88 | 77.93 | 78.48 69.21
KNN 79.81(77.35|75.97 | 76.42 1.65 0.015
LightGBM | 81.55 | 79.9 | 79.81 | 79.73 0.02
MLP 81.58 | 84.21 | 81.58 | 81.58 38.65
Table 5. Result with 23 features
Feature Training
Acc (%) | Pre (%) | Re (%) | F1 (%) Re.ductlon Time (s)
Time (s)
Feature Selection
DT 79.38 | 85.23 | 78.45 | 78.76 0.23
RF 79.47 | 84.98 | 78.55 | 78.86 8.52
KNN 80.42 | 80.98 | 78.01 | 78.26 2.43 0.014
LightGBM | 84.57 | 87.37 | 84.57 | 84.22 19.36
MLP 53.05 | 64.43 | 53.05 | 48.22 55.15
Feature Extraction
DT 81.57 | 85.58 | 7851 | 78.23 4.65
RF 81.25 | 823 | 78.79 | 79.06 67.98
KNN 79.97 | 78.28 | 77.44 | 77.72 1.98 0.015
LightGBM | 81.62 | 83.96 | 81.61 | 81.58 18.08
MLP 80.99 | 86.33 | 80.99 | 80.41 32.72
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When the number of features increased to 23, as
shown in Table 5, FS demonstrated remarkable
improvements in model performance compared to its
results with 17 features. Notably, the performance
metrics of all models increased with FS as the number of
features grew. This result highlights FS's ability to better
utilize additional features for classification as the feature
set expands. In contrast, FE showed stability in these
metrics, indicating that its performance gains plateaued
with the addition of more features. Regarding
dimensionality reduction time, FE remained about 1
second faster than FS, reaffirming its preprocessing
efficiency. However, the training time for FE was
considerably longer, with RF requiring an average of 68
seconds for training.

As the number of features increased to 53, 67, and
eventually 74 (full of features), corresponding to Tables 6,
7, and 8, FS performance improved significantly. The
accuracy of FS models reached up to 94% (LightGBM), with
Precision peaking at approximately 93%. Recall and F1-
Score also saw substantial improvements, reaching nearly
90%. This demonstrates FS's ability to leverage a larger
feature set effectively, particularly with LightGBM, which
consistently performed best among FS models.
Conversely, FE metrics remained relatively stable, showing
minimal improvement even compared to scenarios with
fewer features, such as 17 or 23, suggesting diminishing
returns for FE as the feature set grows. While FE continued
to have faster dimensionality reduction times than FS, this
advantage was outweighed by its significantly longer
training times, particularly for RF, which required over 108
seconds with the full feature set. These findings highlight
FS as a more practical choice when working with larger
feature sets, particularly in time-sensitive applications,
while FE remains advantageous for small feature subsets
where its efficiency and performance benefits are more
pronounced.

Table 6. Results with 53 features

Acc | Pre | Re | F1 RZ:?::::“ Training

(%) | (%) | (%) | (%) Time (s) Time (s)
Feature Selection
DT 89.38 | 92.31 | 86.43 | 87.66 0.87
RF 89.64 | 91.41 | 87.35 | 88.27 13.95
KNN 77.57 | 75.78 | 7491 | 75.16 2.51 0.017
LightGBM | 91.75 | 92.88 | 91.75 | 91.7 24.13
MLP 77.97 | 80.62 | 77.97 | 71.75 63.25
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When using FS with a small number of features, critical
information is often discarded, leading to poorer

48 | HaUl Journal of Science and Technology

Feature Extraction performance metrics. In contrast, with FE, specifically
o 8185 | 8249 | 794 | 79.47 804 PCA, the transformatpn ensures that key information ‘|s
concentrated in the first few components. As shown in
RF 81.86 | 83.73 | 79.45 | 79.69 107.63 Figures 3 and 4, most of the information is captured
KNN 79.81(78.26 | 77.3 | 77.62 293 0.017 within the first 47 components, with the highest
LightGBM | 81.81 | 84.07 | 81.81 | 81.81 36.78 concentration in the first three components. This explains
MLP 8151 | 847 | 8151 | 8155 3478 the stabllltym‘performance metrlcsfor F‘E ?S the'z nL'Jr'nber
: of features increases, while FS exhibits significant
Table 7. Results with 67 features variability due to the inclusion of more complete
Feature information.
Acc | Pre | Re | F1 Reduction Training L
@) | @) | @) | ©%) : Time (s) Furthermore, |t' is |mporta‘nt to' note that PFA
Time (s) transforms the data into a new dimensional space, which
Feature Selection can result in some loss of information. This may account
DT 914 19371 8922 | 90.18 1 for the accuracy platee'aumg‘at arouer 8‘1% in our study.
These observations align with the findings reported by
RF 9173 | 9241 |89.59 | 90.42 1589 the authors in [10] demonstrating the robustness of their
KNN 79.03 | 77.54 | 76.54 | 76.89 261 0.018 conclusions when applied to the Edge-lloT dataset in our
LightGBM | 93.68 | 94.36 | 93.68 | 93.7 25.41 experiments. The summarized observations and insights
MLP 8158 | 84.21 | 8158 | 81.58 64.97 when analyzing with Edge-lloT dataset are presented in
; the comparative Table 9.
Feature Extraction
Table 9. Summary in comparison between FS and FE
DT 81.85 | 84.54 | 79.39 | 79.48 9.18
No Content FS | FE
RF 81.91 | 83.85|79.55| 79.8 108.07
1 | Higheraccuracy when a small number of features 4
KNN 79.81|78.26 | 77.31 | 77.63 0.81 0.018 - - X
2 | Higher accuracy when increasing features 4
LightGBM | 82.84 | 84.74 | 82.84 | 82.86 44.81 . -
3 | Lower time for reduction features v
MLP 81.67 | 86.94 | 81.67 | 80.96 37.38 4 | Lower time for training model v
Table 8. Results with full of features 5 Less sensitive to the number of selected/extracted v
Feat features
Acc | Pre | Re | F1 Reililc:::n Training — - m
%) | ©) | o) | ©%) ‘ Time (s) 6 Greater potential for performance improvement wit v
Time (s) fewer features.
Feature Selection 7 | Effectiveness in High-Dimensional Data 4
DT 91.41 | 93.65 | 89.12 | 90.13 1.13 8 Effective in Computational Complexity During v
RF 91.08 | 91.77 | 88.98 | 89.84 18.25 Reduction
o = v
KNV [ 7981|7825 | 773 | 7762 | 264 0,019 9| Suitability for Real-Time Systems
LightGBM | 93.72 | 94.38 | 93.72 | 93.74 2455 5. CONCLUSION
MLP 8124 8532 | 8124 | 8072 67.26 This study evaluated FS and FE techniques using the
) Edge-lloT dataset to assess their effectiveness in an loT
Feature Extraction Intrusion Detection System. Our findings reveal that with
DT 81.85 | 84.54 17943 | 79.51 9.4 fewer features, FE achieves higher accuracy than FS,
RF 81.88 1 83.79 | 795 | 79.74 106.1 which tends to lose accuracy in such cases. Conversely, FS
KNN 79817826 | 7731 | 77.63 0.86 0.019 performs better with larger feature sets, while FE
) accuracy drops under the same conditions. Notably, FE
LightGBM | 82.83 | 84.73 | 82.83 | 82.86 48.95 S . .
maintains stability as the number of features increases,
MLP 815 | 8401 815 | 815 38.17 demonstrating its robustness compared to FS.

We also observed that training time increases
significantly when using PCA for FE compared to using
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PCC-based Feature Selection, highlighting the trade-off
between computational efficiency and model stability.

Future work will explore hybrid methods that
combine FS and FE, as well as investigate new feature
reduction algorithms designed to better accommodate
the computational limitations of loT devices. This
approach aims to optimize both efficiency and accuracy,
enabling more secure and resource-efficient loT
networks and operating guide. The method approach in
this research is multi-purposeful and can be used in all
cases of electrical discharge drilling processes with
different materials.
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