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ABSTRACT 

The neighborhood rough set model has been recognized as an effective 
tool and has been successfully applied to the problem of attribute reduction 
in numerical decision tables. However, this model and its various extensions 
still face significant limitations in reflecting the importance of individual 
condition attributes. Moreover, the traditional neighborhood rough set model 
assumes that all objects within a neighborhood granule contribute equally, 
despite  their actual contributions to classification performance may vary. To 
address these shortcomings, we initially construct a new type of information 
granule based on the integration of condition attribute weights and object 
weights. Based on these granules, we propose a fuzzy weighted 
neighborhood rough set (FWNRS) model and develop a new uncertainty 
classification measure to define an effective reduct. Finally, we design an 
attribute reduction algorithm for decision tables that can be applied across 
various data scenarios. 

Keywords: Decision table, Reduct, Neighborhood rough sets. 
 

1HaUI Institute of Technology, Hanoi University of Industry, Vietnam 
2School of Information and Communications Technology, Hanoi University of 
Industry, Vietnam 
*Email: anhpv@haui.edu.vn 
Received: 07/7/2025 
Revised: 15/9/2025 
Accepted: 28/9/2025 

 

1. INTRODUCTION 

In recent years, attribute reduction on decision 
tables has emerged as a critical issue, attracting 
significant attention from the research community. The 
main goal of this process is to retain a subset of key 
conditional attributes in order to enhance the 
effectiveness of classification models. It is well known 
that the rough set model proposed by Pawlak [1] has 
been effectively applied to the problem of attribute 
reduction on decision tables with discrete and 

categorical attributes. However, this model has 
significant limitations when dealing with decision tables 
containing numerical attributes due to its use of a strict 
relation. Therefore, extending this model has become a 
highly promising research area. 

The neighborhood rough set model has recently 
gained wide recognition and is considered an effective 
solution for addressing the problem of attribute 
reduction in decision tables containing 
numerical/continuous attributes. Instead of employing 
indiscernibility relations as in the rough set model, the 
neighborhood rough set model utilizes neighborhood 
relations. Consequently, each object in the universe is 
represented by a neighborhood class consisting of 
objects that are neighbors of the given object within a 
radius of δ [2]. Based on the neighborhood rough set 
model, many effective attribute reduction methods 
were proposed. Particularly, Hu et al. constructed some 
measures including the neighborhood decision error 
rate [3]. Based on the neighborhood discrimination 
index, Wang et al. [4] proposed an algorithm for finding 
an optimal reduct through the conditional 
discrimination index. Subsequently, Sun et al. [5] 
presented a new heuristic algorithm for attribute 
reduction, which incorporates the neighborhood 
tolerance dependency joint entropy to efficiently 
handle mixed and incomplete datasets. Expanding 
upon other extensions of neighborhood rough sets, 
Yang et al. [6] developed pseudo-label neighborhood 
rough sets and proposed a heuristic algorithm that 
utilizes the pseudo-label conditional entropy measure 
to handle uncertain data. Zhang et al. [7] developed a 
conditional neighborhood conbination information 
entropy measure to handle diverse data in feature 
extraction. On the other hand, Yang et al. [8] 
approached the problem through distance metric 
learning, optimizing the structure of information 
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granules and proposing two feature selection 
algorithms. Additionally, Wang et al. [9] introduced  
k-nearest neighborhood rough sets to address this type 
of heterogeneous data. Although algorithms based on 
the neighborhood rough set space have been 
developed in different ways [10-12] they still face certain 
limitations due to the following issues: 

1) The first issue stems from the fact that the 
neighborhood rough set model does not accurately 
reflect the impact of each conditional attribute on the 
decision attributes. 

2) The second issue is that some measures developed 
based on this model focus only on the objects within an 
information granule while ignoring other objects, even 
though these objects also contribute to the classification 
capability. 

3) The third limitation is that the neighborhood rough 
set model assumes the roles of objects within an 
information granule to be the same, although in reality 
these objects have different distributions. 

To address the aforementioned issues, this study 
initially proposes a new type of information granule 
constructed using attribute weights and object weights. 
Based on these information granules, we introduce a new 
concept called the fuzzy weighted neighborhood rough 
set model. This model is capable of providing a more 
detailed assessment of the role of each object within an 
information granule compared to traditional 
neighborhood rough set models. Accordingly, we 
construct an uncertainty classification measure and 
define a new efficient reduct. Finally, we design an 
attribute reduction algorithm based on a filter approach 
to extract an optimal subset of attributes. 

 The main content of this paper is organized as 
follows. Section 2 presents the relevant knowledge 
concerning decision tables and the neighborhood rough 
set theory. Section 3 describes the fuzzy weighted 
neighborhood rough set model and the uncertainty 
classification measure. Section 4 introduces the attribute 
reduction algorithm based on the fuzzy weighted 
neighborhood rough set model, and Section 5 provides 
some discussions as well as future research directions. 

2. BASIC NOTIONS 

This section provides a summary of concepts related 
to the neighborhood rough set model. This theory is a 
popular tool often used for the attribute reduction 
problem. 

In reality, data is often organized as a decision table 
 DS U,C D  , where U is referred to as the universe set 

and contains objects, C and D are the sets of condition 
attributes and decision attributes, respectively, satisfying 
C ØD  . Then, with u U and a C D  , a(u) is 
considered the attribute value of u on attribute a. 

Example 1. Let  S U,C D  , where 

 1 2 3 4 5 6U u ,u ,u ,u ,u ,u  as Table 1. 

Table 1. A decision table 

U a1 a2 a3 a4 a5 D 

u1 0.72 0.93 0.65 0.52 0.69 Yes 

u2 0.43 0.92 0.52 0.44 0.57 No 

u3 0.21 0.64 0.85 0.62 0.21 Yes 

u4 0.95 0.82 0.21 0.81 0.94 No 

u5 0.45 0.72 0.28 0.87 0.18 Yes 

Let  DS U,C D   be a decision table, A C  be a 

subset of attributes, and u,v U . The distance between 
the two objects u and v with respect to the attribute set 
A, denoted as  A u,v , is defined as follows: 

      p
pA

a A

u,v a u a v


    (1)

where  A u,v  is called the Manhattan distance if  

p = 1, the Euclidean distance if p = 2, and the Chebyshev 
distance if p = ∞.  

Suppose that δ is a neighborhood radius with a value 
in the range [0, 1]. Then, a binary relation δ

AR , called a 

neighborhood relation on U from the attribute set A, is 
defined as follows: 

    δ
AAR u,v U U : u,v δ      (2) 

Clearly, the neighborhood relation represents the 
similarity or dissimilarity between objects in the universe. 

Based on this relation,     δ δ
AAu v U : u,v R   is defined 

as the neighborhood information granule of object u 
induced by the attribute subset A. It is easy to see that the 

neighborhood information granule  δ
Au  is an ordinary 

set that satisfies  δAu U . Then, by considering all 

objects in the universe space, we can obtain a family of 
neighborhood information granules, denoted as 

  δδ
A AU R u : u U  , which is referred to as a 

neighborhood cover induced by the attribute set A. 
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Based on the concept of a neighborhood information 
granule, for a set of objects X U , the definitions of the 

upper approximation  AN X  and the lower approximation 

 AN X  of U are presented as follows. 

    δ
A A ØN X u U: u X     (3) 

and  

    δ
A AN X u U : u X    (4) 

3.  FUZZY WEIGHTED NEIGHBORHOOD ROUGH SETS 

3.1. Fuzzy weighted neighborhood information 
granules 

This section starts with the following definition of the 
generalized weighted distance. Given an attribute A and 
two objects u, v, the generalized weighted distance 
between u and v with respect to A, denoted  ω

A u,v , is 

determined by 

        pω pA
a A

u,v ω a . a u a v


     (5) 

where ω is the weight of attribute a C . Then, a 
generalized attribute weighted neighborhood 
information granule of object u is defined as: 

    δ,ω ω
AAu v U : u,v δ     (6) 

Normally, we consider the objects in  δ,ω
Au  with the 

same role degree when making decisions for object u. 
However, each of these objects may play a different role 
in evaluating u. Therefore, considering each object’s 
degree of importance, also known as weight, is vital. Next, 
we shall more closely consider this information granule 
by assigning weights to each object within it. Suppose 

that  
 

δ,ω
1 2 δ,ωA u A

u u ,u , ,u 
  
 

 , we can assign  u
A 1ω u , 

 u
A 2ω u ,...,

 
u
A δ,ωu A

ω u 
 
 

 as the weights of objects in 

 δ,ω
Au , in which    iω u 0,1  for all  δ,ω

A1 i u  . The 

greater the weight value of  u
A iω u , the more important 

the object iu  is in evaluating object u. Combining  δ,ω
Au  

with its weights, we propose a novel information granule 
known as a fuzzy weighted neighborhood information 
granule, which has the following definition 

        δ,ω u u u
A 1 A 2 A UAu ω u ,ω u , ,ω u   (7) 

Clearly,  δ,ω
Au  can be considered as a fuzzy set on U if 

the objects in  δ,ω
Au  have the membership function 

values as their weights, and other objects have the 
membership function values by 0. Therefore, in the 
subsequent sections of the paper, operations related to 

 δ,ω
Au  can also be performed in the same way as for a 

fuzzy set. Then, we denote     δ,ω
AG A u : u U    the 

family of all fuzzy weighted neighborhood information 
granules. In this paper, the weight of each attribute a C  

is determined by  
 

1
ω a

1 σ a



, where σ(a) is the 

standard deviation of the values of objects for condition 

attribute a. The weight of each object   δ,ω
Av u  is 

calculated as follows: 

 
 

   

 

δ,ω
C Du

A δ,ωω
A C

u u1
ω v .

1 u,v u





 (8)

where       d DDu v U: d u d v    is an 

equivalence class of object u on D. 
Formula (8) is the product of two components. The 

first component is regarded as the relative distance 
between two objects u and v. As this distance increases, 

the weight of object v in  δ,ω
Au  decreases, i.e. the role of 

v in the granule is diminished. The second component 
measures the amount of information that u contributes 
to the decision class D. If this amount of information is 

small, the roles of all objects in  δ,ω
Au  are also weakened. 

Example 2. With δ = 0.6, we determine the fuzzy 

weighted neighborhood information family  G C  as 

follows. 
- The partition of the attribute decsion: 

    1 3 5 2 4U D u ,u ,u , u ,u  

-Determine the weight of each condition attribute a 

by Equation  
 

1
ω a

1 σ a



: 

 1ω a 1.26 ,  2ω a 1.11 ,  3ω a 1.24 , 

 4ω a 1.16 ,  5ω a 1.29  

- Compute the weighted distance between the 
objects on C: 

 ω
1 2C

1.26 0.72 0.43 ,

u ,u max 1.11 0.93 0.93 , , 0.54

1.29 0.69 0.57

  
 

     
   

  
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Similarly, we obtain: 

 ω
1 3C u ,u 0.86  ,  ω

1 4C u ,u 0.54  , 

 ω
1 5C u ,u 0.35  ,  ω

2 3C u ,u 0.71  , 

 ω
2 4C u ,u 0.53  ,  ω

2 5C u ,u 0.70  , 

 ω
3 4C u ,u 0.76  ,  ω

3 5C u ,u 0.85  , 

 ω
4 5C u ,u 0.89  . 

- Determine the weighted neighborhood information 
granules on C: 

   0.6,ω
1 1 2 4 5Cu u ,u ,u ,u ,    0.6,ω

2 2 4Cu u ,u , 

   0.6 ,ω
3 3Cu u ,    0.6,ω

4 1 2 4Cu u ,u ,u , 

   0.6,ω
5 1 5Cu u ,u . 

- Compute fuzzy weighted neighborhood granules 
with respect to C: 

 
 

   

 

δ,ω
1 1C Du1

1C δ,ωω
1 1C 1 C

u u1
ω u .

1 u ,u u

1 2
0.5

1 0 4






  


 

Similarly, we obtain: 

 u1
2C

1 2
ω u 0.32

1 0.54 4
  


, 

 u1
3C

1 2
ω u 0.27

1 0.86 4
  


, 

  u1
4C

1 2
ω u 0.32

1 0.54 4
  


, 

 u1
5C

1 2
ω u 0.37

1 0.35 4
  


. 

Hence, we have: 

 0.6,ω
1 C

1 2 3 4 5

0.5 0.32 0.27 0.32 0.37
u , , , ,

u u u u u
 

  
 

 . 

- Similarly, we also obtain  0.6,ω
2 Cu ,  0.6,ω

3 Cu ,  0.6,ω
4 Cu , 

 0.6,ω
5 Cu  and fuzzy weighted neighborhood information 

family  G C . 

 

0.50 0.32 0.27 0.32 0.37
0.65 1.00 0.91 0.65 0.59

G C 0.54 0.58 1.00 0.57 0.54
0.43 0.44 0.38 0.67 0.35

0.74 0.59 0.54 0.53 1.00

 
 
 

  
 
 
  

  

3.2. Basic concepts of FWNRSs 

Under the fuzzy weighted information granules 
framework, we propose a new rough set model named 
fuzzy weighted neighborhood rough sets (FWNRSs). 

Given a decision table  DS U,C D  , an attribute 

subset A C  and an object subset X U . The upper and 
lower approximations of X based on the fuzzy weighted 
neighborhood information granules with respect to A are 
respectively determined as follows: 

 
 

 

δ,ω
A

A δ,ω
A

u X
FW X u U: α

u

  
   
  

 


 (9) 

and  

 
 

 

δ,ω
A

A δ,ω
A

u X
FW X u U: β

u

  
   
  

 


 (10) 

where 0 β α 1   . 

Then, the boundary of X with respect to  G A  is 

defined as 

     A A AFBN X FW X FW X   (11) 

Next, we can construct the fuzzy weighted positive 
region and fuzzy weighted boundary of D with respect to A 
as follows: 

   A A
X U D

FPOS D FW X


   (12) 

and  

     A A AFBN D FW D FW D   (13) 

where     A A
X U D

FW D FW X


   and 

   A A
X U D

FW D FW X


  . 

Let  S U,C D   be a decision table, and A be an 

attribute subset of C. The fuzzy weighted dependency 
degree of D to A is determined by 

 
 AFPOS D

γ A,D
U

  (14) 

Proposition 1. Given a decision table  S U,C D   of 

FWNRSs, the following properties hold: 

1) If β = 0 then  AFW D U ; 

2) If β = 0 then    A AFBN D U FPOS D  ; 
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3)    A A ØFBN D FPOS D  ; 

4)      A A AFBN D FPOS D FW D  . 

Proof. 1) Based on Equation 10 and β = 0, if for any 

v X , then  Av FW X . Hence,  AX FW X  for any 

X U D . Thus,    A A
X U D X U D

X FW X FW D
 

   . 

Meanwhile, 
X U D

X U


 , hence  AU FW D . Additionally, 

 AFW D U . Therefore,  AFW D U . 

2) Based on Equation 13, we have 
   A AFBN D U FW D  . Additionally, 

     A A A
X U D

FW D FW X FPOS D


  . Therefore, 

   A AFBN D U FPOS D  . 

3)  From Equation 13, 

         A A A A AFBN D FW D FW D FW D FPOS D    . 

Therefore,    A A ØFBN D FPOS D  . 

4) We have 

         A A A A AFBN D FW D FW D FW D FPOS D    . 

Therefore,      A A AFBN D FPOS D FW D  . 

Proposition 2. Let  S U,C D   be a decision table 

and A,B C . If A B , then  

1) u U  ,    δ,ω δ,ω
B Au u  ; 

2) If β = 0, then X U  ,    B AFW X FW X ; 

3) If α = 1, then X U  ,    A BFW X FW X ; 

4) If α = 1, then    A BFPOS D FPOS D  and 

   γ A,D γ B,D  . 

Proof.  

1) According to Equation 5 and A B , we have 

             p p

a A a B

ω a . a u a v ω a . a u a v
 

    , for 

all u,v U . Therefore, for all u U ,    δ,ω δ,ω
B Au u , it 

follow that    δ,ω δ,ω
B Au u  . 

2) From β = 0, for any  Bu FW X , we have 

 

 

δ,ω
B

δ,ω
B

u X
0

u


 


, which implies that  δ,ω

Bu X 0  . 

Meanwhile, according to Proposition 2.1, since A B , we 

obtain    δ,ω δ,ω
B Au u  . Thus,  δ,ω

Au X 0   and 

 Au IW X . Hence,    B AFW X FW X . 

3) From α = 1, for any  Au FW X , we have 

 

 

δ,ω
A

δ,ω
A

u X
1

u


 


, which implies that  δ,ω

Au X . Meanwhile, 

according to Proposition 2.1, since A B , we obtain 

   δ,ω δ,ω
B Au u  . Thus,  δ,ω

Bu X  và 
 

 

δ,ω
B

δ,ω
B

u X
1

u


 


. 

Therefore,  Bu FW X  and    A BFW X FW X . 

4) Based on Proposition 2.3, we always obtain : 

       A A B B
x U D x U D

FPOS D FW X FW X FPOS D
 

    . 

Hence,    γ A,D γ B,D  . 

4. ATTRIBUTE REDUCTION WITH FWNRSs 

This section introduces a key application of FWNRSs 
in attribute reduction for decision tables. The objective 
is to identify a minimal subset of attributes, referred to 
as a reduct, that preserves the essential information of 
the decision table, equivalent to that provided by the 
full set of attributes. Specifically, we define a reduct from 
the perspective of the dependency degree in the 
decision table. 

Definition 1. Given a decision table  S U,C D  , an 

attribute subset A is called a γ -reduct of C based on the 

fuzzy weighted dependency degree if A satisfies the 
following conditions: 

1)    γ A,D γ C,D  , 

2) a A  ,     γ A \ a ,D γ A,D  . 

It is evident that a γ -reduct in Definition 1 is the 

minimal subset of attributes that preserves the 
consistency factor of all attributes in the decision table. In 
other words, this reduct contains only the objects in the 
positive region of the decision table and ignores the 
others. However, in cases where the decision table is 
inconsistent, the number of objects outside the positive 
region will be larger. These objects are considered 
unclassifiable with certainty, and ignoring them in the 
computation process can significantly affect the quality 
of the obtained reduct. Therefore, we define another type 
of reduct to handle all objects in the universe. First, we 
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construct a measure, referred to as the uncertainty 
classification degree of objects in the universe, based on 
a given attribute subset. 

Definition 2. Given a decision table  S U,C D   and 

an attribute subset A C , the uncertainty classification 
degree of objects in U employing the attribute subset A, 
denoted  η A,D , is defined as  

 

    

 

u u
A D

v U
δ,ω

u U A

max 0, ω v ω v
1

η A,D
U u













 (15) 

It is evident that    0 η A,D U 1 U   . Intuitively, 

the classification ability of the attribute subset A increases 
as the uncertainty classification degree  η A,D

decreases, and vice versa. In the case where  η A,D  = 0, 

every object in U can be classified with certainty based on 
the attribute subset A. Based on this measure, we further 
redefine a new reduct as the basis for developing an 
attribute reduction algorithm for the decision table. 

Example 3.  From fuzzy weighted neighborhood 

information family  G C , we compute  η C,D  as follows. 

 
     0.32 0.32 0.65 0.91 0.59 0.58 0.571

C,D
5 5

     
    

1 (0.43 0.38 0.35) (0.59 0.53)
0.27

5 5
   

    

Definition 3. Given a decision table  S U,C D  , an 

attribute subset A C  is called a  -reduct of C relative to 

D if A satisfies the following 

1)    η A,D η C,D  , 

2) a A  ,     η A \ a ,D η A,D  . 

Clearly, a  -reduct is a subset that preserves the 

certainty degree of all objects in the universe. Therefore, 
the  -reduct has better generalization ability than the γ

-reduct. Based on this definition, we present the attribute 
importance for selecting the key attributes of the decision 
table. 

Definition 4. Given a decision table  S U,C D  , an 

attribute subset A C  and an attribute a C \ A , the 
significance measure of the attribute a with respect to A, 
denoted Sig(a, A), is detemined by 

      Sig a,A η A,D η A a ,D     (16) 

The significance of any attribute for an attribute 
subset is exactly the change of the certainty degree when 
that attribute is added to the attribute subset. Intuitively, 
we can see that the change of the certainty degree, i.e. 
the value of Sig(a, A), is bigger, the attribute a will be more 
vital. This is because the uncertainty classification does 
not satisfy the monotonicity property with respect to the 
size of the attribute subset. In this case, the attribute is 
considered noisy and deemed unimportant in the 
decision table. In the case of attributes with positive 
significance values, these attributes are considered 
meaningful and make a significant contribution to the 
decision table. From this definition, we will design an 
algorithm to extract a subset of attributes from the 
decision table. The algorithm begins with an empty set of 
attributes and then iteratively adds the attributes with 
the highest significance in each iteration until the 
stopping condition is satisfied. The algorithm is 
specifically presented in the pseudocode in Algorithm 1. 

Algorithm 1. Attribute Reduction with FWNRSs 
(ARFWNR) 

Input: a decision table  S U,C D   and a 

neighborhood radius   

Output: a reduct red 

1 compute the weight of each attribute a C  

2 compute  η C,D  by Equation 15 

3 for a C  do  

4  compute   G a  by Equation 8 

5  compute   η a ,D by Equation 15 

6 end for  

7 
 0red a  which satisfies: 

     0
a C

η a ,D minη a ,D


   

8 while    red,D C,D    do 

9  
compute  Sig a,red , for all 

a C \ red  by Equation 16 

10  
select a0 which satisfies: 

    0
a C\red

Sig a ,red max Sig a,red


  

11   0red red a   

12 end while 

13 return red 
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To evaluate the computational complexity of 
Algorithm 1, suppose that C , U  represent the number 

of condition attributes and the number of objects in the 
decision table, respectively. It is easy to see that the 
complexity of the algorithm when calculating the 
weights of each condition attribute is  O C . U . The 

execution time of the algorithm in Step 2 is  2O C . U , 

which is also the computational complexity in the for 
loop from Step 3 to Step 6. In the while loop, whenever an 
added attribute does not satisfy the property of a reduct, 
the remaining attributes will continue to be considered in 
order to select the one with the greatest importance. In 
that case, the complexity from Step 8 to Step 12 is 

 2 2O C . U . Therefore, the overall complexity of the 

entire algorithm is  2 2O C . U . 

5. CONCLUSION 

In this study, we initially proposed a new type of 
neighborhood information granule, which is composed 
of the weights of condition attributes and the weights of 
objects within the granule. These information granules 
were then used to construct Fuzzy Weighted 
Neighborhood Rough Sets (FWNRSs). Based on this, we 
presented several important properties of FWNRSs and 
proposed a new measure to evaluate all objects in the 
universe. From this measure, we defined an effective 
reduct and designed an attribute reduction algorithm. In 
the future, we will continue to develop new models as a 
foundation for designing algorithms capable of handling 
various data scenarios. 
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