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TÓM TẮT  

Nước là yếu tố nền tảng quyết định sự sống, sinh trưởng và năng suất của cây trồng. Tuy nhiên, hiện tượng stress nước (thiếu hoặc thừa nước trên cây trồng) 
sẽ làm suy giảm hiệu quả quang hợp giảm sinh trưởng sinh khối và trong nhiều trường hợp dẫn đến chết cây, ảnh hưởng đến năng suất và làm giảm chất lượng 
nông sản, đe dọa an ninh lương thực toàn cầu. Các phương pháp phát hiện truyền thống thường tốn kém thời gian, phá huỷ mẫu và phụ thuộc đánh giá chủ
quan khiến kết quả không chính xác và chậm. Hiện nay, sự phát triển của các kỹ thuật hình ảnh bao gồm ảnh khả kiến, ảnh nhiệt, ảnh đa phổ, ảnh siêu phổ kết 
hợp cùng các thuật toán học máy, đặc biệt là các mạng nơ-ron tích chập đã giúp phát hiện sớm, phân loại tình trạng stress nước trên quy mô lớn với độ chính xác 
cao và tốc độ phân tích nhanh. Nghiên cứu này cung cấp một cái nhìn tổng quan về ứng dụng các kỹ thuật hình ảnh và học máy đã và đang được sử dụng trong 
chẩn đoán stress nước cùng phân tích các ưu điểm, hạn chế và khả năng ứng dụng trong bối cảnh sản xuất nông nghiệp. Đồng thời, bài báo nhấn mạnh vai trò 
quan trọng của hệ thống giám sát tích hợp dữ liệu cảm biến và học máy để hỗ trợ người nông dân đưa ra quyết định. Cuối cùng, nghiên cứu đề xuất các hướng 
phát triển công nghệ tiềm năng để hướng tới xây dựng hệ sinh thái nông nghiệp thông minh, tối ưu hóa hiệu quả sử dụng nước và nâng cao khả năng thích ứng 
với điều kiện khí hậu đang ngày một khắc nghiệt. 

Từ khóa: Stress nước, kỹ thuật hình ảnh, sức khoẻ cây trồng, học máy. 

ABSTRACT  

Water is a fundamental factor determining the survival, growth, and yield of crops. However, water stress significantly impairs photosynthetic efficiency 
and biomass accumulation, often leading to plant mortality. This compromises crop yield and quality, and threatens global food security. Traditional 
detection methods are often time-consuming, destructive, and reliant on subjective assessments, resulting in inaccurate and delayed findings. Currently, 
the advancement of imaging techniques such as visible imaging, thermal imaging, multispectral imaging, and hyperspectral imaging, combined with 
machine learning algorithms, particularly Convolutional Neural Networks (CNNs), has facilitated the early detection and large-scale classification of water 
stress with high accuracy and rapid processing speed. This review provides a comprehensive overview of the application of imaging techniques and machine 
learning in water stress diagnosis, analyzing their advantages, limitations, and applicability in agricultural production contexts. Furthermore, the paper 
highlights the critical role of monitoring systems that integrate sensor data and machine learning to support farmers in decision-making. Finally, the study 
proposes potential technological directions aimed at building a smart agriculture ecosystem to optimize water use efficiency and enhance adaptability to 
increasingly harsh climatic conditions. 

Keywords: Water stress, imaging techniques, plant health, machine learning. 
 

1Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội 
*Email: trienpm@vnu.edu.vn 
Ngày nhận bài: 15/8/2025 
Ngày nhận bài sửa sau phản biện: 15/10/2025 
Ngày chấp nhận đăng: 28/11/2025 



P-ISSN 1859-3585     E-ISSN 2615-9619     https://jst-haui.vn                                                                                     SCIENCE - TECHNOLOGY 

Vol. 61 - No. 11 (Nov 2025)                                                                                                                                       HaUI Journal of Science and Technology 55

 

1. GIỚI THIỆU 

Hiện nay, sự cải thiện chất lượng cuộc sống, thực 
phẩm và công nghệ đã giúp tăng cường sức khoẻ và tuổi 
thọ của con người. Một nghiên cứu được công bố năm 
2024 đã dự báo dân số thế giới sẽ liên tục gia tăng và đạt 
con số 10 tỉ người vào năm 2060, kéo theo các nhu cầu cơ 
bản về lương thực, cơ sở hạ tầng... cần được cải thiện và 
bổ sung [1]. Sản lượng của cây trồng phụ thuộc vào rất 
nhiều yếu tố như: ánh sáng, nhiệt độ, độ ẩm, lượng mưa 
và dinh dưỡng. Trong đó, nước đóng vai trò quan trọng 
và ảnh hưởng trực tiếp đến chất lượng, hình thái, tham 
gia các quá trình sinh lý, vận chuyển chất dinh dưỡng và 
điều hòa nhiệt độ [2]. Một trong những chức năng quan 
trọng nhất của nước là tham gia vào quá trình quang hợp 
nhằm cung cấp oxy cho môi trường, đóng góp trực tiếp 
vào sự hình thành đường và các hợp chất cac-bon và 
đóng vai trò nền tảng trong chuỗi dinh dưỡng của cây [3]. 
Ngoài ra, nước còn tham gia vận chuyển dinh dưỡng, 
truyền tín hiệu hooc-mon và bảo vệ tế bào khỏi stress oxy 
hóa [3]. Mặc dù vậy, cây có thể đối mặt với tình trạng bị 
stress nước, làm giảm khả năng hấp thu các vi chất dinh 
dưỡng thiết yếu và ảnh hưởng nghiêm trọng đến quá 
trình tổng hợp protein, carbonhydrate và các hợp chất 
hữu cơ khác trong cây. Khi đó, cây sẽ kích hoạt các cơ chế 
thích nghi như đóng khí khổng và ức chế sinh trưởng lá 
để giảm thiểu mất nước (xem hình 1) [4]. Ngược lại, thừa 
nước cũng ảnh hưởng lớn đến sự sinh trưởng và năng 
suất của các loại cây trồng nhạy cảm với lũ lụt [5]. Thừa 
nước dẫn đến tình trạng thiếu oxy do tốc độ khuếch tán 
chậm trong nước và quá trình tiêu thụ oxy của vi sinh vật 
cũng như rễ cây. 

 
Hình 1. Sơ đồ minh họa phản ứng của thực vật đối với căng thẳng do stress 

nước [7] 

Nước ngọt đang dần trở thành một nguồn tài nguyên 
khan hiếm ở nhiều khu vực trên thế giới [6]. Tại Việt Nam, 

tình trạng cạn kiệt và ô nhiễm nguồn nước ngày càng 
nghiêm trọng. Chỉ khoảng 1% tổng lượng nước trên Trái 
đất có thể sử dụng trực tiếp cho nông nghiệp và sinh hoạt 
[7]. Trước áp lực gia tăng dân số, đô thị hóa và biến đổi khí 
hậu, việc phát triển phương pháp quản lý nước hiệu quả là 
vô cùng cấp thiết. Hiện nay, các công nghệ hình ảnh tiên 
tiến đang được ứng dụng rộng rãi trong giám sát stress 
nước ở cây trồng, giúp phát hiện sớm dấu hiệu stress nước 
và tối ưu hóa việc sử dụng nước. Các kỹ thuật phổ biến bao 
gồm hình ảnh nhiệt  để đo sự thay đổi nhiệt độ tán lá do 
giảm thoát hơi nước; hình ảnh đa phổ và siêu phổ để phân 
tích chỉ số thực vật như NDVI (Normalized Difference 
Vegetation Index), SAVI (Soil Adjusted Vegetation Index); 
và hình ảnh khả kiến để đánh giá mức độ xanh và cấu trúc 
tán cây [7]. Kết hợp với các loại cảm biến như cảm biến độ 
ẩm đất, pH, độ dẫn điện và trí tuệ nhân tạo, các kỹ thuật 
này không chỉ nâng cao hiệu quả sản xuất mà còn hướng 
tới một nền nông nghiệp bền vững, thích ứng với biến đổi 
khí hậu. Mặc dù vậy, hiện nay chưa có một nghiên cứu nào 
tập trung vào việc tổng hợp ứng dụng cũng như so sánh, 
đánh giá hiệu quả của các kỹ thuật hình ảnh trong nhận 
biết sớm stress nước trên cây trồng. Nghiên cứu này không 
chỉ tổng hợp tình hình phát triển công nghệ, đặc biệt là các 
kỹ thuật xử lý ảnh và ứng dụng học sâu trong nông nghiệp, 
còn chỉ ra các nhu cầu thực tiễn, đề xuất những định hướng 
nghiên cứu cho tương lai. 

2. PHƯƠNG PHÁP NGHIÊN CỨU  

Nghiên cứu này thực hiện một tổng quan hệ thống để 
phân tích các kỹ thuật hình ảnh và mô hình học sâu ứng 
dụng trong giám sát stress nước ở cây trồng. Quy trình 
được thực hiện thông qua ba bước chính: (1) Xác định các 
câu hỏi nghiên cứu trọng tâm về loại kỹ thuật hình ảnh, 
lợi ích - hạn chế và hiệu quả của học sâu; (2) Thu thập tài 
liệu từ các cơ sở dữ liệu uy tín (Web of Science, Scopus, 
IEEE Xplore) trong giai đoạn 2015 đến nay, sử dụng hệ 
thống từ khóa chuyên ngành; (3) Sàng lọc tài liệu theo 
tiêu chí và trích xuất dữ liệu theo các chủ đề được mã hóa. 
Bài nghiên cứu tổng quan được cấu trúc thành các phần: 
tổng quan lý thuyết về stress nước, mô tả chi tiết các kỹ 
thuật cảm biến hình ảnh (nhiệt, siêu phổ, đa phổ, RGB) và 
ứng dụng học máy, cùng với đánh giá toàn diện dựa trên 
độ chính xác, tính ứng dụng và chi phí. Phần kết luận tập 
trung phân tích thách thức và đề xuất định hướng phát 
triển cho các hệ thống nông nghiệp thông minh. 

3. KỸ THUẬT HÌNH ẢNH TRONG THU THẬP DỮ LIỆU 
STRESS NƯỚC 

Tình trạng nước là một trong những yếu tố quan trọng 
ảnh hưởng đến sinh trưởng và phát triển của cây trồng. 
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Nước đóng vai trò thiết yếu trong các quá trình sinh lý của 
thực vật như quang hợp, vận chuyển dinh dưỡng và điều 
hòa nhiệt độ. Khi cây bị thiếu nước, sự cân bằng nội môi 
bị xáo trộn, dẫn đến giảm hiệu suất quang hợp, rối loạn 
trao đổi chất và thậm chí làm chết cây trong điều kiện 
nghiêm trọng [4]. Tình trạng ngập úng ngắn hạn ở cây cải 
xoăn có thể làm thay đổi nồng độ glucosinolate - hợp 
chất dinh dưỡng quan trọng góp phần tạo nên giá trị dinh 
dưỡng của loại rau này [8]. Các nhà nghiên cứu đã phát 
triển nhiều phương pháp để đánh giá stress nước, bao 
gồm phân tích kiểu hình thực vật dựa trên kỹ thuật hình 
ảnh nhiệt, ảnh siêu phổ và các công nghệ cảm biến khác 
[7]. Ảnh khả kiến phân tích màu sắc trong ảnh khả kiến 
giúp nhận biết sự thay đổi về sắc thái của lá do stress 
nước, thể hiện qua việc chuyển từ màu xanh đậm sang 
vàng hoặc nâu. Tuy nhiên, kỹ thuật này thường chỉ phát 
hiện được khi stress đã ở mức nghiêm trọng [9]. Ảnh siêu 
phổ cung cấp thông tin chi tiết về phản xạ ánh sáng ở 
hàng nghìn dải bước sóng, cho phép phát hiện những 
thay đổi nhỏ nhất trong cấu trúc và thành phần hóa học 
của lá, giúp nhận biết stress nước ở giai đoạn rất sớm [10]. 
Ảnh nhiệt đo lường nhiệt độ bề mặt lá bằng ảnh nhiệt 
giúp xác định mức độ thoát hơi nước của cây. Khi cây bị 
stress nước, khả năng thoát hơi nước thay đổi, dẫn đến 
biến đổi nhiệt độ lá, từ đó có thể phát hiện dấu hiệu stress 
[11]. Ảnh đa phổ sử dụng các dải bước sóng khác nhau để 
tính toán các chỉ số thực vật như NDVI, giúp phát hiện sự 
thay đổi trong quang hợp và trạng thái nước của lá ở giai 
đoạn đầu. Việc kết hợp các kỹ thuật này với học máy giúp 
phát hiện sớm căng thẳng nước và hỗ trợ quản lý nông 
nghiệp bền vững [12]. Nhờ đó, các nghiên cứu này không 
chỉ giúp cải thiện hiệu quả sử dụng nước mà còn hỗ trợ 
xây dựng chiến lược quản lý nông nghiệp bền vững. 

Ứng dụng các kỹ thuật hình ảnh trong thu thập 
thông tin cây trồng 

Hình ảnh RGB thu nhận trong dải ánh sáng khả kiến 
(xanh lam, xanh lục, đỏ) là công cụ phổ biến để đánh giá 
sức khỏe thực vật. Dựa trên các chỉ số thực vật như chỉ số 
diện tích lá (Leaf Area Index, LAI), chỉ số xanh lá (Green 
Leaf Index, GLI), hình ảnh RGB có thể cung cấp thông tin 
quan trọng về sự thay đổi sắc tố và sinh khối của cây trồng 
dưới điều kiện stress nước [13]. Mặc dù có chi phí thấp, 
ảnh RGB bị hạn chế độ chính xác do phụ thuộc vào điều 
kiện ánh sáng và góc chụp. Ngược lại, ảnh nhiệt cung cấp 
đánh giá hiệu quả trạng thái nước thông qua cơ chế nhiệt: 
khi thiếu nước, khí khổng đóng lại làm tăng nhiệt độ bề 
mặt lá, cho phép theo dõi khả năng chịu hạn và tối ưu hóa 
tưới tiêu. Bên cạnh đó, các kỹ thuật ảnh phổ (đa phổ và 
siêu phổ) phát hiện stress nước thông qua sự thay đổi 

phản xạ ánh sáng, đặc biệt là sự gia tăng phản xạ ở dải 
cận hồng ngoại (800 - 2500nm) do giảm hàm lượng nước 
trong mô. Việc kết hợp dữ liệu ảnh phổ với mô hình học 
máy cho phép dự đoán chính xác mức độ stress nước theo 
thời gian thực. 

Ứng dụng ảnh khả kiến  

Hình ảnh khả kiến đã được sử dụng rộng rãi trong 
khoa học thực vật nhờ chi phí thấp và dễ vận hành, bảo 
trì. Ứng dụng bao gồm phân tích sinh khối, đặc điểm 
năng suất, hình thái lá và sức sống cây con. Theo nghiên 
cứu của Fevgas và cộng sự [14], chuyển đổi ảnh RGB sang 
không gian màu HSV để tách nền và phân tích vùng lá, 
giúp phát hiện biến đổi cấu trúc tán lá do thiếu nước. Kỹ 
thuật hợp nhất ảnh RGB và nhiệt (Thermal InfraRed, TIR) 
làm tăng độ chính xác của mô hình phát hiện sớm căng 
thẳng nước và tiết kiệm chi phí giám sát [15]. Trong một 
nghiên cứu đã sử dụng một bộ phân loại tuyến tính đơn 
giản được sử dụng để tách phần lá xanh của cây khỏi nền 
ảnh. Sau khi phân đoạn màu, 14 đặc trưng về màu sắc và 
kết cấu được rút trích cho mỗi ảnh, tương ứng với ba mức 
tưới (tưới đủ, tưới hạn chế, thiếu nước nghiêm trọng). Mô 
hình phát hiện hai giai đoạn, huấn luyện với các tập hợp 
đặc trưng khác nhau, nhằm đánh giá chính xác mức độ 
stress nước. Mô hình áp dụng thuật toán học có giám sát 
Gradient Boosting Decision Tree cho kết quả khả quan: độ 
chính xác phân loại ba mức tưới đạt 80,95% và độ chính 
xác dự báo stress nước đạt 90,39% [16], chứng minh hiệu 
quả trong đánh giá điều kiện tưới tiêu trên đồng ruộng. 

Ứng dụng ảnh siêu phổ  

Kỹ thuật ảnh siêu phổ (Hyperspectral Image, HSI) là 
một công cụ tiên tiến trong lĩnh vực viễn thám và phân 
tích hình ảnh, cho phép thu thập thông tin phổ chi tiết 
trên nhiều dải bước sóng liên tục. Trong việc giám sát 
stress nước của cây trồng, HSI mang lại ưu thế vượt trội 
nhờ khả năng phân biệt sự thay đổi sinh lý của cây dựa 
trên phản xạ phổ. Nghiên cứu trên khoai tây sử dụng 
camera 710-VP Surface Optics Corporation với 128 dải 
phổ trong khoảng 400 - 1000nm, trong khi nghiên cứu 
trên rau diếp sử dụng hệ thống PlantScreen™ (Photon 
System Instruments, Czechia) với dải phổ 350 - 950nm 
[17]. Cả hai nghiên cứu đều sử dụng tấm Spectralon để 
chuẩn hóa dữ liệu phản xạ, cùng các chỉ số thực vật như 
NDVI, SAVI,... để tách tán lá và phân tích stress nước. Khi 
kết hợp HSI với thuật toán máy học, các mô hình Random 
Forest (RF), Extreme Gradient Boosting trong nghiên cứu 
trên khoai tây cho thấy khả năng phát hiện stress nước 
chính xác cao nhất khi sử dụng phương pháp majority 
voting, với các băng tần quan trọng như ~400nm (violet), 
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~700nm (red edge), ~750 - 1000nm (NIR) [18]. Trong 
nghiên cứu trên rau diếp, mạng nơ-ron đạt 89,8% chính 
xác với dữ liệu HSI, trong khi RF đạt 89,7% khi phân loại 
stress nước dựa trên chỉ số chlorophyll fluorescence, cho 
thấy hiệu quả của học máy trong trích xuất thông tin từ 
ảnh phổ. Cả hai nghiên cứu đều chứng minh rằng HSI có 
thể cung cấp dữ liệu phản xạ chi tiết về stress nước, giúp 
tối ưu hóa tưới tiêu và hỗ trợ chương trình lai tạo giống 
cây chịu hạn. Ứng dụng HSI trong nông nghiệp chính xác 
có thể giúp cải thiện giám sát cây trồng theo thời gian 
thực, giảm thiểu tổn thất do hạn hán và nâng cao hiệu 
quả sử dụng tài nguyên nước. 

Ứng dụng ảnh nhiệt  
Hình ảnh nhiệt ghi lại bức xạ hồng ngoại từ thực vật 

để chuyển thành hình ảnh nhiệt độ bề mặt, phản ánh 
trạng thái thoát hơi nước của cây [19]. Về cơ bản, chụp 
ảnh nhiệt ghi lại những thay đổi trong tương tác giữa bức 
xạ điện từ và thực vật. Trong số đó, bức xạ hồng ngoại bao 
gồm hồng ngoại gần (0,75 - 1,3μm), hồng ngoại sóng 
ngắn (1,3 - 3μm), hồng ngoại sóng trung (phạm vi từ 3 
đến 8μm), hồng ngoại xa sóng dài (phạm vi từ 8 đến 
14μm) và hồng ngoại cực đại (14 - 1000μm) [20]. Việc sử 
dụng hồng ngoại sóng dài, nhạy cảm hơn với nhiệt độ 
thấp (nhiệt độ trong nhà) có lợi hơn cho việc phân tích 
kiểu hình thực vật. Nghiên cứu cho cây nho, ứng dụng 
ảnh nhiệt có thể dự đoán tình trạng nước của cây nho với 
độ chính xác cao, đạt hệ số xác định R2 lên tới 0,65 và sai 
số RMSE chỉ 0,184MPa, ngay cả khi không sử dụng nhiệt 
độ tham chiếu, cho thấy tiềm năng ứng dụng mạnh mẽ 
trong giám sát tưới tiêu chính xác và tự động [21]. Ảnh 
nhiệt hồng ngoại được sử dụng như một công cụ cảm 
biến từ xa không xâm lấn để ghi nhận nhiệt độ tán lá cây 
anh đào, từ đó trích xuất các chỉ số như chỉ số căng thẳng 
nước và chỉ số độ dẫn khí và khi kết hợp với mô hình học 
máy sử dụng mạng nơ-ron nhân tạo với ảnh chia nhỏ 
10x10, mô hình đã dự đoán chính xác chỉ số Ψs và gs với 
hệ số tương quan cao (R trong khoảng 0,83 đến 0,86), 
chứng minh tiềm năng lớn của phương pháp này trong 
giám sát và quản lý tưới tiêu chính xác cho cây trồng [22]. 

Ứng dụng ảnh đa phổ 
Ảnh đa phổ (Multispectral Image, MSI) là một công 

nghệ viễn thám quan trọng giúp theo dõi stress nước ở 
cây trồng bằng cách phân tích phản xạ quang phổ trên 
một số dải bước sóng cụ thể. Không giống như ảnh siêu 
phổ, MSI chỉ thu thập dữ liệu từ một số lượng giới hạn dải 
phổ rộng (thường từ 3 - 10 băng tần), nhưng vẫn đủ để 
cung cấp thông tin quan trọng về tình trạng nước và sinh 
lý của cây trồng với chi phí thấp hơn [24]. Việc chuyển đổi 
từ ảnh siêu phổ sang ảnh màu được biết là một nhiệm vụ 

đơn giản vì nó chỉ yêu cầu giảm bớt thông tin [24]. Tuy 
nhiên, quá trình chuyển ngược lại - từ ảnh màu sang ảnh 
siêu phổ hoặc ảnh đa phổ - không phải là một nhiệm vụ 
đơn giản (xem hình 2). 

 
Hình 2. Sơ đồ tổng quát của việc chuyển đổi giữa ảnh khả kiến và ảnh 

siêu/đa phổ 

Các nghiên cứu gần đây đã chỉ ra rằng MSI có thể được 
sử dụng để phát hiện stress nước thông qua các chỉ số 
thực vật như NDVI, RVI (Ratio Vegetation Index), GRI 
(Green-Red Index) và WBI. Trong một nghiên cứu về cỏ 
sân vườn, NDVI, WBI và GRI đã được sử dụng để ước tính 
hàm lượng nước trong đất và phản ứng của cây với hạn 
hán. Kết quả cho thấy WBI có mối tương quan mạnh nhất 
với hàm lượng nước trong đất (r ≥ 0,80), trong khi NDVI 
chỉ có hiệu quả khi cây trồng đã bị stress nghiêm trọng 
[23]. Ưu điểm nổi bật của MSI là khả năng tích hợp trên 
UAV, cho phép giám sát diện rộng với chi phí thấp. Tuy 
nhiên, do giới hạn về số lượng dải phổ, MSI khó phân biệt 
căng thẳng nước với các stress khác như thiếu dinh 
dưỡng. Để nâng cao độ chính xác, nhiều nghiên cứu đề 
xuất kết hợp MSI với học máy hoặc cảm biến nhiệt. Bảng 
1 đã tóm tắt các kỹ thuật hình ảnh trong giám sát và phát 
hiện sớm stress nước dựa trên các tiêu chí: chi phí, độ phổ 
biến, độ chính xác, giai đoạn phát hiện, điểm yếu và tình 
huống ứng dụng. 

Bảng 1. Các kỹ thuật hình ảnh trong giám sát, phát hiện stress nước trên 
cây trồng 

Kỹ 
thuật 

Độ chính 
xác 

Giai đoạn 
phát hiện 

Điểm yếu 
Tình huống ứng 

dụng 
RGB Trung bình Khá sớm 

nếu có biến 
đổi màu 

hoặc hình 
thái rõ rệt 

Độ chính xác của bị 
hạn chế do biến 
dạng kích thước 
giữa mặt phẳng 2D 
và cây; không thể 
xuyên qua tán cây 
trồng; không phù 
hợp với môi trường 
có ánh sáng thay 
đổi và nhiều vật 
che khuất [25] 

- Phổ biến trong 
nghiên cứu và thực 
tiễn (nhà kính,...) 
- Chi phí rẻ, vận 
hành đơn giản 
- Làm bước tiền xử 
lý (kết hợp với TIR) 
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TIR Khá cao 
với stress 
nước, cần 
hiệu chỉnh 

môi 
trường 

Tương đối 
sớm, dựa 

vào chênh 
lệch nhiệt 
độ lá khi 
cây thiếu 

nước 

Chỉ thu các đặc điểm 
liên quan đến nhiệt 
độ bề mặt; độ phân 
giải không gian và 
khả năng lặp lại 
tương đối kém; khó 
triển khai hơn so với 
nhiệt kế hồng ngoại; 
hiệu quả rất hạn chế 
trong các chênh lệch 
nhiệt độ nhỏ [26], 
dễ bị nhiễu loạn đối 
với nhiệt độ đất, 
không khí và tán cây 

- Giám sát diện 
rộng, đo nhanh, 
không xâm lấn 
 - Tích hợp với UAV 
hoặc cầm tay để 
quản lý tưới  
- Phát hiện stress 
nước qua chênh 
lệch nhiệt độ lá 

MSI Tốt với các 
chỉ số thực 
vật (NDVI, 
WBI…), 

nhưng chi 
tiết phổ 
hạn chế 

Khá sớm, 
tùy thuộc 
vào chỉ số 
sử dụng 
(NDVI, 

WBI…) 

Độ phân giải phổ 
thấp, khó phân biệt 
stress nước với 
thiếu dinh dưỡng; 
phụ thuộc vào điều 
kiện ánh sáng [27] 

- Thích hợp giám 
sát diện rộng với 
chi phí vừa phải 

 - Phù hợp hệ 
thống UAV nông 
nghiệp chính xác  

- Phát hiện stress 
nước sớm, tối ưu 
tưới tiêu 

HSI Rất cao 
(ghi nhận 
hàng trăm 
băng tần, 
phân tích 

tinh vi 
biến đổi 
sinh lý) 

Khá sớm 
(có thể sớm 
hơn MSI do 
phân giải 

quang phổ 
cao) 

Trọng lượng nặng 
so với cảm biến 
RGB, kích thước dữ 
liệu lớn đòi hỏi sức 
mạnh tính toán, 
thời gian và tài 
nguyên lớn hơn; 
không phù hợp với 
các ứng dụng trực 
tuyến [28] 

- Nghiên cứu học 
thuật, chọn giống, 
phân tích chuyên 
sâu 

 - Dữ liệu phân giải 
cao, phát hiện biến 
đổi phổ tinh vi 

 - Triển khai khi cần 
chính xác cao nhất 
hoặc có hạ tầng 
tính toán mạnh 

4. CÁC KỸ THUẬT HỌC MÁY TRONG PHÂN TÍCH DỮ 
LIỆU STRESS NƯỚC 

Học máy bao gồm các thuật toán cho phép máy tính 
tự động học từ dữ liệu để giải quyết các bài toán thực tế, 
đặc biệt hiệu quả trong xử lý ảnh và phân tích dữ liệu lớn 
[29]. Nhìn chung, học máy được phân thành ba loại chính 
(xem bảng 2): 

1. Học có giám sát: là phương pháp trong đó mô hình 
học từ các cặp dữ liệu đầu vào và đầu ra tương ứng để từ 
đó dự đoán kết quả cho các dữ liệu đầu vào mới [30]. 

2. Học không giám sát: sử dụng các kỹ thuật phát 
hiện và phân loại các mẫu tiềm ẩn trong dữ liệu mà không 
có sẵn nhãn đầu ra. 

3. Học tăng cường (Reinforcement Learning, RL): là 
một nhánh của học máy, trong đó các tác nhân học thông 
qua việc tương tác với môi trường nhằm tối ưu hóa phần 
thưởng tích lũy theo thời gian [31]. 

Đặc biệt trong lĩnh vực nông nghiệp, RL cho thấy tiềm 
năng lớn trong việc hỗ trợ ra quyết định theo thời gian 
thực và tự động hóa quy trình. Nhờ khả năng học hỏi liên 
tục từ môi trường, RL phù hợp với điều kiện nông nghiệp 
luôn biến động. Mặc dù hiện tại RL vẫn còn ít được áp 
dụng trong nghiên cứu về căng thẳng nước ở cây trồng 
[32], nhưng tiềm năng trong việc tối ưu hóa chiến lược 
tưới tiêu và cải thiện khả năng quản lý thích ứng là rất 
đáng chú ý và cần được khai thác thêm trong tương lai. 
Việc lựa chọn thuật toán học máy phù hợp phụ thuộc vào 
bản chất của vấn đề, số lượng và loại biến đầu vào, cũng 
như đặc điểm dữ liệu cụ thể. Trong các nghiên cứu gần 
đây, các thuật toán như máy vecto hỗ trợ (Support Vector 
Machines, SVM) đã được ứng dụng hiệu quả trong việc 
phân tích dữ liệu cảm biến từ xa để đánh giá mức độ căng 
thẳng nước ở cây trồng. 

4.1. Học máy có giám sát 

4.1.1. Máy vecto hỗ trợ  

SVM hoạt động bằng cách tìm một siêu phẳng tối ưu 
để phân tách các lớp dữ liệu với việc sử dụng hàm hạt 
nhân như tuyến tính, đa thức, Gauss cho trường hợp phi 
tuyến tính [33]. Mô hình này dựa trên các vectơ hỗ trợ 
giúp đạt độ chính xác cao ngay cả khi số lượng dữ liệu 
huấn luyện còn hạn chế [34]. Một ưu điểm nổi bật khác 
của SVM là khả năng chống lại hiện tượng quá khớp 
(overfitting) nhờ vào việc duy trì sự cân bằng giữa hiệu 
quả trên tập huấn luyện và khả năng khái quát hóa sang 
dữ liệu mới [35]. Azimi và cộng sự [36] đã phát triển một 
phương pháp nhận dạng căng thẳng nước ở cây đậu gà, 
sử dụng hình ảnh RGB và các kỹ thuật trích xuất đặc trưng 
như SIFT (Biến đổi đặc trưng không phụ thuộc vào tỉ lệ) 
và HOG (Biểu đồ hướng gradient). Các mô hình học máy 
như KNN (K-Nearest Neighbors), cây quyết định, Naive 
Bayes và SVM được so sánh, trong đó SVM cho kết quả 
chính xác cao nhất đạt 73%. Mohite cùng nhóm nghiên 
cứu [37] áp dụng hình ảnh siêu phổ từ UAV để phát hiện 
căng thẳng nước ở cây ngô. Các dải bước sóng có ảnh 
hưởng được lựa chọn làm đầu vào, với hai mô hình SVM 
và RF được triển khai. SVM vượt trội trong phạm vi bước 
sóng 670 - 780nm. Sankararao và cộng sự [38] sử dụng dữ 
liệu siêu phổ từ UAV để phát hiện căng thẳng nước ở cây 
kê ngọc trai. Sau khi áp dụng các kỹ thuật lựa chọn đặc 
trưng, các mô hình SVM và RF được đánh giá, với SVM đạt 
độ chính xác cao tới 95,38% và 80,76% khi phát hiện căng 
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thẳng ở giai đoạn sớm. Những kết quả này khẳng định 
SVM là một công cụ mạnh mẽ trong việc xử lý dữ liệu phi 
tuyến và chiều cao, đặc biệt phù hợp với đặc điểm phức 
tạp của ảnh RGB và ảnh siêu phổ. Khả năng mô hình hóa 
các mẫu tinh vi trên các dải bước sóng và kết hợp hiệu 
quả với các phương pháp chọn đặc trưng giúp SVM mang 
lại kết quả dự đoán vượt trội so với nhiều phương pháp 
truyền thống khác. Ngoài ra, SVM còn phát huy thế mạnh 
khi xử lý dữ liệu ở nhiều thang đo, chẳng hạn như trong 
các ứng dụng wavelet nhờ khả năng kết hợp linh hoạt 
giữa thông tin thời gian và tần số, cho phép trích xuất các 
mẫu trọng yếu từ dữ liệu cảm biến. 

4.1.2. Mạng nơ-ron nhân tạo 

Mạng nơ-ron nhân tạo (Artificial Neural Network, 
ANN) là một mô hình toán học được McCulloch và Pitts 
giới thiệu, lấy cảm hứng từ cấu trúc mạng nơ-ron sinh 
học, với các đơn vị nơ-ron được huấn luyện bằng cách tự 
điều chỉnh trọng số và độ lệch để ánh xạ các mẫu dữ liệu 
đầu vào với đầu ra tương ứng. Sau khi được huấn luyện 
đầy đủ từ dữ liệu lịch sử, ANN có khả năng thích ứng với 
những thay đổi theo chu kỳ và nhận diện các mẫu phức 
tạp ẩn trong dữ liệu. ANN với cấu trúc Perceptron đa lớp 
gồm lớp đầu vào, lớp ẩn và lớp đầu ra, sử dụng hàm kích 
hoạt để xử lý thông tin [39]. Hình 3 minh họa cấu trúc điển 
hình của một mạng ANN với các lớp và kết nối giữa các 
nơ-ron thể hiện quá trình truyền và xử lý thông tin. Nhờ 
vào khả năng học sâu từ dữ liệu, ANN được ứng dụng phổ 
biến trong các nhiệm vụ phân loại và nhận dạng, đặc biệt 
là khi xử lý dữ liệu từ ảnh đa phổ [40]. 

 
Hình 3. Cấu trúc mạng nơ-ron nhân tạo 

Các mô hình ANN đã được sử dụng hiệu quả trong 
nhiều ứng dụng quan trọng như: ước tính lượng bốc 
thoát hơi nước [41] và đặc biệt là đánh giá mức độ căng 
thẳng nước của cây trồng. Với khả năng thích nghi linh 
hoạt và xử lý dữ liệu phi tuyến, đa biến phức tạp, ANN là 
một công cụ đầy tiềm năng trong việc hiện đại hóa nông 
nghiệp chính xác. Elsherbiny và cộng sự [14] ứng dụng 
kết hợp ánh sáng khả kiến và hình ảnh nhiệt để trích xuất 
các đặc điểm màu sắc, kết cấu và chỉ số nhiệt từ cây lúa, 

sử dụng tổng cộng 21 đặc trưng đầu vào đạt độ chính xác 
99,4%. Carrasco-Benavides và cộng sự [42] sử dụng ảnh 
nhiệt hồng ngoại để phân tích căng thẳng nước ở cây anh 
đào thông qua các đặc trưng như nhiệt độ tán cây và độ 
ẩm tương đối độ chính xác 83% đối với thế nước thân cây, 
75% cho độ dẫn khí khổng và 81% tổng thể. Với khả năng 
học quan hệ phi tuyến, trích xuất đặc trưng tự động và 
quản lý đa biến, ANN khẳng định vị thế công cụ tối ưu cho 
hệ thống quản lý nước và hỗ trợ ra quyết định tưới tiêu 
trong nông nghiệp chính xác. 

4.1.3. Mạng nơ-ron tích chập  

Năm 1980, K. Fukushima giới thiệu mô hình 
neocognitron, được xem là tiền đề cho sự phát triển của 
mạng nơ-ron tích chập (Convolutional Neural Network, 
CNN) hiện đại [43]. CNN được xây dựng dựa trên ba lớp 
chính với các chức năng chuyên biệt. Đầu tiên, lớp tích 
chập sử dụng các bộ lọc để trích xuất đặc trưng cục bộ từ 
dữ liệu đầu vào. Tiếp theo, lớp gộp (pooling) có nhiệm vụ 
giảm kích thước dữ liệu, qua đó tăng khả năng khái quát 
hóa và giảm lượng tham số của mô hình. Cuối cùng, lớp 
kết nối đầy đủ (fully connected) tổng hợp toàn bộ thông 
tin đã qua xử lý để đưa ra dự đoán hoặc thực hiện phân 
loại. Kiến trúc phân tầng này cho phép CNN xử lý hiệu quả 
dữ liệu hình ảnh và nhận dạng các đặc trưng phức tạp 
theo cấp độ từ thấp đến cao. Hình 4 minh họa cấu trúc 
tổng quát của một mạng CNN, thể hiện rõ cách thức dữ 
liệu được truyền và trích xuất đặc trưng qua các lớp. Mạng 
CNN bắt đầu từ việc nhận dữ liệu ảnh đầu vào, sau đó lần 
lượt trải qua các lớp tích chập (kết hợp hàm kích hoạt phi 
tuyến), lớp gộp và lớp kết nối đầy đủ để đưa ra kết quả 
cuối cùng. Kiến trúc này cho phép CNN học các đặc trưng 
phức tạp và tự động từ dữ liệu, đặc biệt hiệu quả trong 
các tác vụ phân tích hình ảnh. 

 
Hình 4. Cấu trúc cơ bản của mạng CNN 

Một điểm mạnh quan trọng của CNN là khả năng tự 
động học các đặc trưng có ý nghĩa từ dữ liệu hình ảnh, 
thay vì phải thiết kế thủ công. Khi được huấn luyện với 
khối lượng dữ liệu lớn, CNN có thể học được các đặc trưng 
ở mức sâu hơn, từ đó phát hiện các mẫu phức tạp và ẩn 
trong hình ảnh. Trong lĩnh vực nông nghiệp, CNN đã được 
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ứng dụng vào nhiều tác vụ quan trọng như: xác định 
bệnh trên cây trồng, nhận dạng cây trồng... Các mô hình 
học sâu, đặc biệt là mạng nơ-ron tích chập đã được chứng 
minh là có hiệu suất vượt trội trong việc phát hiện tình 
trạng căng thẳng nước ở cây trồng nhờ khả năng học đặc 
trưng hình ảnh phức tạp và xử lý dữ liệu kiểu hình không 
xâm lấn. Chandel và cộng sự [44] đề xuất một hệ thống 
giám sát thời gian thực bằng thiết bị di động. Mô hình 
GoogLeNet được dùng để phân loại mức độ căng thẳng, 
đạt độ chính xác 97,9% cho ngô và 92,9% cho lúa mì, với 
thời gian xử lý chỉ 200 mili giây. Trong một nghiên cứu 
khác, Melo và cộng sự [45] sử dụng mô hình Inception-
ResNet-v2 để phân tích ảnh nhiệt của cây mía, đạt độ 
chính xác 83%, 90% và 98% tương ứng với các mức 25%, 
50% và 100% dung tích nước khả dụng. Những nghiên 
cứu này nhấn mạnh tính hiệu quả của CNN trong việc học 
các đặc điểm kiểu hình tinh vi để phát hiện căng thẳng 
nước mà không cần tiếp xúc vật lý với cây trồng. 

4.2. Học máy không giám sát 

Thuật toán phân cụm K-means là một phương pháp 
học không giám sát hiệu quả để phân nhóm dữ liệu dựa 
trên độ tương đồng nhằm chia tập dữ liệu thành k cụm 
sao cho tổng bình phương khoảng cách từ các điểm đến 
tâm cụm là nhỏ nhất [46]. Thuật toán thực hiện lặp đi lặp 
lại quá trình gán điểm vào cụm và cập nhật vị trí tâm cụm 
cho đến khi đạt trạng thái hội tụ. Trong nông nghiệp, K-
means được sử dụng để phân loại các trạng thái sinh 
trưởng của cây - chẳng hạn như "không stress", "stress 
nhẹ" và "stress nghiêm trọng" - dựa trên các chỉ số sinh lý 
như tốc độ kéo dài lá, nhiệt độ bề mặt lá và hàm lượng 
nước trong đất [48]. Phương pháp này giúp xác định các 
ngưỡng stress động, thay vì dựa vào các mốc cố định như 
truyền thống, từ đó phản ánh chính xác hơn sự thích nghi 
sinh lý của cây theo thời gian (ví dụ do rễ cây phát triển 
sâu hơn, tiếp cận nước tốt hơn). Trong nghiên cứu của 
Owino L. cùng cộng sự, K-means Clustering đã được áp 
dụng để phân tích dữ liệu tiêu thụ nước hằng ngày của 
hộ dân, từ đó phát hiện ra 3 kiểu sử dụng nước khác nhau 
tương ứng với các mùa trong năm. Kết quả cho thấy thuật 
toán này cho độ hiệu quả phân cụm cao nhất so với các 
phương pháp khác, với chỉ số Silhouette đạt 0,6315 và 
Calinski-Harabasz Index đạt 305,92, phản ánh khả năng 
mô hình hóa tốt hành vi tiêu thụ nước để phục vụ quản lý 
tài nguyên [47]. Còn trong một nghiên cứu khác, K-means 
được dùng để phân loại mức độ stress ở cây ngô theo 
từng giai đoạn sinh trưởng (lá thứ 4 và thứ 5). Các cụm 
được xác định rõ ràng và mô hình hóa bằng hồi quy bậc 
nhất đến bậc ba, với độ chính xác R² từ 89% đến 98%, cho 

thấy khả năng theo dõi diễn tiến ngưỡng stress theo thời 
gian. Đặc biệt, cụm "high stress" có ranh giới hoàn toàn 
tách biệt với các cụm khác, chứng minh tính khả thi của 
phương pháp trong thiết kế hệ thống điều khiển tưới tự 
động [48]. Tóm lại, K-means Clustering không chỉ là một 
công cụ học máy mạnh mẽ trong nhận diện water stress 
mà còn chứng minh hiệu quả thực tiễn thông qua độ 
chính xác cao, khả năng thích ứng theo thời gian và hỗ 
trợ ra quyết định trong quản lý nước bền vững. 

4.3. Học tăng cường 

Bảng 2. Các kỹ thuật học máy trong chẩn đoán stress nước 

Kỹ 
thuật 

Loại 
học 
máy 

Dữ liệu 
đầu vào 

Điểm mạnh 
Điểm hạn chế,  

thách thức 

SVM Có 
giám 

sát 

- Ảnh RGB, 
Siêu phổ. 
- Dữ liệu 
đặc trưng 
(SIFT, HOG). 

- Hiệu quả 
với bộ dữ 
liệu ít. 
- Chống quá 
khớp  

- Cần bước trích xuất đặc 
trưng thủ công trước khi 
đưa vào mô hình. 

ANN Có 
giám 

sát 

- Ảnh đa 
phổ, ảnh 
nhiệt. 
- Chỉ số 
sinh lý 
(màu sắc, 
kết cấu). 

- Thích ứng 
tốt với dữ 
liệu phi 
tuyến, đa 
biến phức 
tạp. 

- Cần huấn luyện đầy đủ từ 
dữ liệu lịch sử. 
- Cấu trúc mạng phức tạp, 
phụ thuộc vào việc điều 
chỉnh trọng số/độ lệch. 

CNN Có 
giám 

sát 

- Ảnh RGB, 
Ảnh nhiệt. 
- Dữ liệu 
hình ảnh 
thô. 

- Tự động 
trích xuất 
đặc trưng 
(không cần 
làm thủ 
công). 

- Yêu cầu khối lượng dữ liệu 
lớn để mô hình có thể học 
các đặc trưng. 

K-
Means 

Không 
giám 

sát 

- Chỉ số sinh 
lý (nhiệt độ 
lá, độ ẩm 
đất). 
- Dữ liệu 
tiêu thụ 
nước. 

- Phân loại 
được các 
ngưỡng 
stress động. 

- Không dự đoán nhãn cụ 
thể ngay lập tức mà chỉ gom 
nhóm. 
- Kết quả phụ thuộc vào quá 
trình lặp để đạt hội tụ. 

RL Học 
tăng 

cường 

- Tương tác 
với môi 
trường (cơ 
chế thưởng 
phạt) 

- Phù hợp 
với chiến 
lược dài hạn 

- Ít được áp dụng thực tế 
hiện nay. 
- Phức tạp do vấn đề "phần 
thưởng trễ" (hành động bây 
giờ nhưng kết quả mới thấy 
ở cuối vụ). 

Học tăng cường là một nhánh của học máy, trong đó 
một tác nhân học cách ra quyết định thông qua việc 
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tương tác với môi trường và nhận phản hồi dưới dạng 
phần thưởng hoặc hình phạt [49]. Thông qua quá trình 
thử - sai liên tục, tác nhân dần tối ưu hóa chiến lược hành 
động nhằm đạt được mục tiêu dài hạn trong điều kiện 
môi trường không chắc chắn và luôn thay đổi. Trong bối 
cảnh nguồn nước khan hiếm, RL trở thành công cụ tiềm 
năng để tối ưu hóa chiến lược tưới tiêu và giảm thiểu căng 
thẳng nước trong nông nghiệp. Hung và Yang đề xuất mô 
hình RL đa tác nhân mô phỏng hành vi điều chỉnh nhu 
cầu tưới tiêu, giúp hệ thống thích nghi tốt hơn với hạn 
hán và giảm nguy cơ cạn kiệt hồ chứa [50]. Ở một hướng 
tiếp cận khác, Alkaff và cộng sự sử dụng thuật toán 
Proximal Policy Optimization để phát triển hệ thống tưới 
tiêu thông minh cho cây ngô, tích hợp trong môi trường 
mô phỏng AquaCrop-OSPy. Mô hình RL được thiết kế để 
đối phó với tính chất hành động thưa (sparse action) và 
phần thưởng trễ (delayed reward) - hai đặc trưng phổ 
biến trong quản lý nông nghiệp. Cơ chế phần thưởng đặc 
biệt được xây dựng nhằm vừa phạt các lần tưới không cần 
thiết, vừa thưởng lớn cho năng suất cao - sử dụng công 
thức phần thưởng cuối mùa, khuyến khích tác nhân đưa 
ra quyết định hiệu quả cả ngắn và dài hạn. Kết quả thực 
nghiệm cho thấy phương pháp PPO giúp giảm 29% lượng 
nước tưới, nâng cao hiệu suất sử dụng nước lên 
76,76kg/ha/mm (cao hơn 40% so với phương pháp tối ưu 
ngưỡng ẩm SMT), đồng thời tăng lợi nhuận lên 9% [51]. 
Những ứng dụng này chứng minh tiềm năng của RL trong 
quản lý tài nguyên nước bền vững cho nông nghiệp hiện 
đại. Tổng hợp các kỹ thuật học máy trong phân tích stress 
nước được thể hiện ở bảng 2. 

4.4. Hệ thống giám sát stress nước tích hợp học máy 

Một trong những ứng dụng quan trọng của học máy 
là khả năng tích hợp vào hệ thống giám sát tưới tiêu 
thông minh. Trong nghiên cứu của Gupta cùng cộng sự, 
nhóm tác giả đã xây dựng một quy trình bán thời gian 
thực bao gồm thu nhận ảnh CF, xử lý và phân đoạn ảnh, 
trích xuất chỉ số Fv/Fm và cuối cùng phân loại stress 
nước bằng mô hình RF. Hệ thống này có tiềm năng ứng 
dụng rộng rãi trong canh tác quy mô lớn nhờ khả năng 
tự động hóa cao [52]. Tương tự, việc sử dụng UAV tích 
hợp camera RGB hoặc TIR để thu thập ảnh từ trên cao 
giúp giám sát diện rộng và phát hiện kịp thời các khu 
vực có dấu hiệu stress, từ đó kích hoạt hệ thống tưới tự 
động chính xác [53]. Các xu hướng hiện nay còn hướng 
tới phát triển các mô hình học sâu nhẹ có thể triển khai 
trên thiết bị di động hoặc hệ thống nhúng, giúp tiết 
kiệm chi phí và nâng cao tính linh hoạt trong ứng dụng 
thực tế. 

5. THÁCH THỨC VÀ TRIỂN VỌNG CỦA CÁC KỸ THUẬT 
HÌNH ẢNH VÀ CÔNG NGHỆ HỌC MÁY TRONG ĐÁNH 
GIÁ STRESS NƯỚC 

Dù đạt nhiều tiến bộ, việc ứng dụng thực tế các kỹ 
thuật hình ảnh và AI để phát hiện stress nước vẫn đối mặt 
với những thách thức đáng kể. Tính không đồng nhất của 
môi trường ngoài thực địa (biến đổi ánh sáng, sự che 
khuất tán cây) gây khó khăn cho việc xây dựng các bộ dữ 
liệu chuẩn. Các mô hình học sâu, vốn đòi hỏi lượng dữ liệu 
lớn, thường bị sụt giảm hiệu năng khi chuyển từ điều kiện 
phòng thí nghiệm ra thực địa - đây chính là vấn đề tổng 
quát hóa. Hơn nữa, tính chất "hộp đen" của nhiều mô 
hình hạn chế khả năng diễn giải sinh học, làm giảm lòng 
tin của người sử dụng.Để vượt qua các rào cản này, các 
hướng nghiên cứu đang tập trung vào phát triển mô hình 
học nhẹ để triển khai trên thiết bị di động và UAV, kết hợp 
với học chuyển giao, học bán giám sát để thích ứng với 
dữ liệu thực tế. Triển vọng dài hạn hướng tới các hệ thống 
thông minh tích hợp học sâu với mô hình sinh lý cây 
trồng, cho phép không chỉ giám sát mà còn ra quyết định 
tưới tiêu thời gian thực, từ đó tạo nền tảng cho một nền 
nông nghiệp chính xác và bền vững. 

6. KẾT LUẬN 

Nghiên cứu này thực hiện một đánh giá toàn diện về 
các kỹ thuật hình ảnh tiên tiến - bao gồm ảnh khả kiến, 
nhiệt, đa phổ và siêu phổ, trong giám sát và phát hiện 
stress nước ở cây trồng. Kết quả chỉ ra tiềm năng lớn của 
việc kết hợp đồng bộ các công nghệ này để phát hiện 
sớm các dấu hiệu thiếu nước. Để áp dụng thành công, 
nghiên cứu nhấn mạnh yêu cầu hiểu biết sâu về đặc tính 
quang học của cây trồng, cùng với các công cụ phần mềm 
mạnh và quy trình xử lý dữ liệu chính xác. Trong đó, hiệu 
chuẩn cảm biến và tối ưu hóa quy trình xử lý là các bước 
then chốt đảm bảo độ tin cậy của kết quả, góp phần quan 
trọng vào sự phát triển của khoa học thực vật ứng dụng. 
Đặc biệt, sự kết hợp giữa các kỹ thuật hình ảnh và các chỉ 
số thực vật đã mang lại những tiến bộ rõ rệt trong việc 
giám sát stress nước ở các giai đoạn khác nhau của cây 
trồng, từ giai đoạn đầu khi cây chưa có dấu hiệu rõ rệt cho 
đến giai đoạn phát triển mạnh. Việc ứng dụng các mô 
hình học sâu như CNN cho phép tự động hóa và tối ưu 
hóa quy trình giám sát cây trồng, giảm sự can thiệp của 
con người. Các phương pháp này không chỉ giúp phát 
hiện sớm stress nước mà còn mở ra cơ hội phát triển các 
mô hình phân tích cây trồng tổng quát, có thể áp dụng 
cho nhiều loài và chủng loại thực vật khác nhau. Sự kết 
hợp giữa công nghệ chụp ảnh tiên tiến và kỹ thuật học 
sâu không chỉ giúp các nhà nghiên cứu khai thác tối đa 
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dữ liệu hình ảnh mà còn đóng góp vào việc tối ưu hóa quy 
trình sản xuất nông nghiệp. Hơn nữa, việc ứng dụng công 
nghệ này sẽ góp phần quan trọng trong việc bảo vệ môi 
trường và đa dạng sinh học, tạo ra những chiến lược canh 
tác thông minh, hiệu quả và bền vững hơn. Cuối cùng, 
nghiên cứu này chỉ ra rằng việc kết hợp các công nghệ 
hình ảnh tiên tiến với học sâu có tiềm năng lớn trong việc 
phát triển nông nghiệp thông minh và bền vững, mở ra 
một hướng đi mới cho ngành nông nghiệp toàn cầu. 
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