

THE IMPACT OF ACADEMIC RESPONSIBLE LEADERSHIP ON STUDENTS' LEARNING MOTIVATION IN HIGHER EDUCATION INSTITUTIONS: THE MEDIATING ROLE OF CLASSROOM CLIMATE

TÁC ĐỘNG CỦA LÃNH ĐẠO TRÁCH NHIỆM TRONG HỌC THUẬT ĐẾN ĐỘNG LỰC HỌC TẬP CỦA SINH VIÊN Ở CÁC CƠ SỞ GIÁO DỤC ĐẠI HỌC: VAI TRÒ TRUNG GIAN CỦA MÔI TRƯỜNG LỚP HỌC

Le Xuan Huyen^{1,*}

DOI: <https://doi.org/10.57001/huih5804.2025.368>

ABSTRACT

This paper investigates the underexplored link between Academic Responsible Leadership, classroom climate, and students' learning motivation in Higher Education Institutions. Drawing on Social Learning Theory, Self-Determination Theory and the Job Demands-Resources model, we propose that ARL (characterized by ethical integrity, stakeholder engagement, sustainability focus, and accountability) fosters a positive classroom climate (perceived support, fairness, respect, and psychological safety), which in turn enhances students' intrinsic and extrinsic learning motivation. Using a multi-institution, cross-sectional survey design (N = 312 students from various universities), we measured ARL (adapted Academic Responsible Leadership Scale), classroom climate (Classroom Environment Scale - Short Form), and learning motivation (Academic Motivation Scale). These findings highlight classroom climate as a crucial mediating mechanism, suggesting that academic leaders who embody responsibility principles significantly enhance student motivation primarily by cultivating supportive and ethical learning environments. The article offers theoretical advancements by integrating responsible leadership into HE contexts and provides practical implications for leadership development and institutional policies aimed at boosting student engagement and success.

Keywords: Academic responsible leadership, classroom climate, learning motivation, higher education, student engagement.

TÓM TẮT

Bài báo này nghiên cứu mối liên hệ chưa được khám phá giữa lãnh đạo trách nhiệm trong học thuật, môi trường lớp học và động lực học tập của sinh viên tại các cơ sở giáo dục đại học. Dựa trên lý thuyết học tập xã hội, lý thuyết tự quyết và mô hình nhu cầu - nguồn lực công việc, chúng tôi đề xuất rằng lãnh đạo trách nhiệm trong học thuật (ARL) (được đặc trưng bởi tính chính trực về đạo đức, sự tham gia của các bên liên quan, tập trung vào tính bền vững và trách nhiệm giải trình) thúc đẩy môi trường lớp học tích cực (được đặc trưng bởi sự hỗ trợ nhận thức, công bằng, tôn trọng và an toàn về mặt tâm lý), từ đó nâng cao động lực học tập nội tại và ngoại tại của sinh viên. Sử dụng thiết kế khảo sát cắt ngang đa tổ chức (N = 312 sinh viên từ các trường đại học khác nhau), chúng tôi đã đo lường ARL (Thang đo lãnh đạo trách nhiệm trong học thuật - Dạng điều chỉnh), môi trường lớp học (Thang đo môi trường lớp học - Dạng rút gọn) và động lực học tập (Thang đo động lực trong học thuật). Những phát hiện này nhấn mạnh rằng môi trường lớp học là một cơ chế trung gian quan trọng, cho thấy rằng các nhà lãnh đạo học thuật thể hiện các nguyên tắc trách nhiệm sẽ nâng cao đáng kể động lực của sinh viên, chủ yếu bằng cách xây dựng môi trường học tập có tính hỗ trợ và chính trực về đạo đức. Bài báo đề xuất những tiến bộ về mặt lý thuyết bằng cách tích hợp lãnh đạo trách nhiệm vào bối cảnh giáo dục đại học và đưa ra những hàm ý thực tiễn cho việc phát triển lãnh đạo, góp phần hỗ trợ xây dựng các chính sách của cơ sở giáo dục hướng tới cải thiện việc tham gia học tập và thành công của sinh viên.

Từ khóa: Lãnh đạo trách nhiệm trong học thuật, môi trường lớp học, động lực học tập, giáo dục đại học, sự tham gia của sinh viên

¹School of Languages and Tourism, Hanoi University of Industry, Vietnam

*Email: huyenlx@hauui.edu.vn

Received: 25/7/2025

Revised: 02/10/2025

Accepted: 28/10/2025

1. INTRODUCTION

Students' learning motivation remains a cornerstone of academic success, retention, and overall educational quality in Higher Education Institutions (HEIs) [1]. Concurrently, the demand for ethical, accountable, and stakeholder-oriented leadership within academia has intensified [2]. While leadership styles like transformational leadership have been studied in education [3], the specific construct of Responsible Leadership, rooted in business ethics and sustainability [4] remains underexplored in its academic manifestation and its impact on core student outcomes like motivation.

This study bridges this gap by proposing and testing a model examining the impact of Academic Responsible Leadership (ARL) on students' learning motivation (LM), through the mediating mechanism of classroom climate (CC). The reason for the interrelated relationships among these factors is that classroom climate, reflecting students' shared perceptions of academic nurturance within their learning environment [5], is the primary channel through which ARL influences student motivation.

Existing research on student motivation in higher education has primarily focused on general leadership styles or teacher effectiveness [3, 6], leaving a theoretical gap in understanding how more nuanced leadership constructs influence student outcomes. In particular, the ethical, stakeholder-oriented, and sustainability-driven dimensions of ARL - when applied specifically to academic leaders such as deans and department heads - represent a novel and underexplored approach. Moreover, the potential of ARL to exert an indirect influence on student motivation through the shaping of the learning environment adds a new layer of theoretical insight. From a practical perspective, higher education institutions frequently encounter challenges related to student engagement and academic motivation. Understanding how leadership practices grounded in responsibility can contribute to fostering a positive classroom climate and, in turn, enhance students' motivation offers actionable guidance for institutional leaders aiming to improve the quality and effectiveness of teaching and learning processes.

2. THEORETICAL FRAMEWORK AND HYPOTHESES

2.1. Theoretical Framework

Academic Responsible Leadership (ARL) - defined as leadership by institutional principals, deans, department

heads... - the leaders who issue policies affecting the classroom climate where students perform the learning activities - represents a critical paradigm in higher education management, emphasizing ethical integrity, stakeholder engagement, sustainability focus, and accountability [4, 7]. Unlike generic leadership models, ARL specifically addresses the unique moral and relational obligations of academic leaders toward students, faculty, and society [8]. Concurrently, classroom climate - defined as students' collective perceptions of support, fairness, respect, and psychological safety in learning environments [5, 9] - functions as a foundational educational resource. Learning motivation, encompassing intrinsic drive and goal-oriented engagement [1, 10], remains the linchpin of academic achievement. Integrating Social Learning Theory [11], Self-Determination Theory (SDT) [1] and the Job Demands-Resources (JD-R) model [12], we establish the following conceptual relationships:

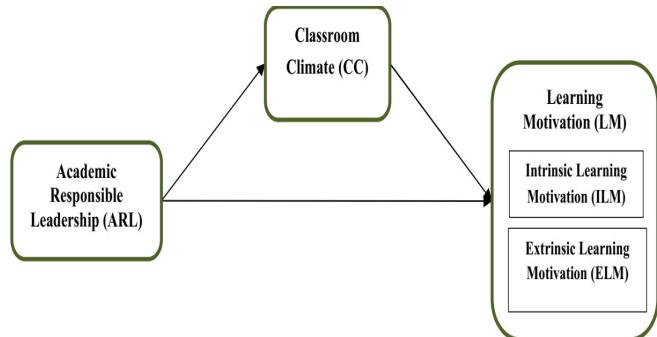


Figure 1. Proposed research model

2.2. Hypothesis Development

2.2.1. Academic Responsible Leadership and Learning Motivation

According to Social Learning Theory [11], leaders serve as ethical role models. When academic leaders demonstrate fairness, transparency, and accountability, students internalize these values, perceiving their learning environment as morally coherent and meaningful. Moreover, stakeholder-focused leadership behaviors - such as equitable access to academic resources - align with students' future goals [1], thereby enhancing extrinsic learning motivation (ELM). Simultaneously, when students perceive their institution as ethically guided, it may also increase their identification [1] with learning, fostering intrinsic learning motivation (ILM). Thus, ARL may positively influence both forms of motivation. Thus, the following hypotheses are proposed:

H1a: Academic responsible leadership positively influences students' intrinsic learning motivation.
H1b: Academic responsible leadership positively influences students' extrinsic learning motivation.

2.2.2. Academic Responsible Leadership and Classroom Climate

Responsible leadership extends beyond interpersonal relationships; it institutionalizes ethical norms into educational policies. Through stakeholder engagement, academic leaders design inclusive curricula and implement fair grading systems that students experience as classroom-level fairness and support [5, 6]. Within the JD-R model, such leadership creates organizational resources (e.g., open dialogue, transparent practices) that translate into perceived psychological safety and inclusion within classrooms [10]. Thus, we hypothesize:

H2: Academic responsible leadership positively influences classroom climate.

2.2.3. Classroom Climate and Learning Motivation

According to Self-Determination Theory [1], students thrive in environments that satisfy their psychological needs for autonomy, competence, and relatedness. Classroom climates characterized by respect, fairness, and support satisfy these needs and stimulate intrinsic motivation. Meanwhile, in line with the JD-R model, such climates also mitigate emotional exhaustion, helping students pursue academic goals more effectively, thereby enhancing extrinsic motivation [9, 10]. Hence, we propose:

H3a: Classroom climate positively influences students' intrinsic learning motivation.

H3b: Classroom climate positively influences students' extrinsic learning motivation.

2.2.4. The Mediating Role of Classroom Climate

We further argue that the influence of ARL on learning motivation is primarily transmitted through classroom climate. This mediation is grounded in both JD-R theory and empirical leadership studies asserting that leadership effects on performance outcomes are often indirect, operating through organizational-level mediators [3]. By modeling ethics and responsiveness, academic leaders shape institutional norms that are experienced as fairness and psychological safety in classrooms. These in turn satisfy students' psychological needs [1] and reduce motivational strain [12], thus activating learning motivation. Thus, the proposed hypotheses are:

H4a: Classroom climate mediates the relationship between academic responsible leadership and intrinsic motivation.

H4b: Classroom climate mediates the relationship between academic responsible leadership and extrinsic motivation.

The model is supposed to allow for partial mediation, acknowledging that ARL may also exert a direct influence on motivation in certain contexts (e.g., through role-modeling), though we expect classroom climate to carry the primary explanatory power.

3. METHODOLOGY

3.1. Research Design & Sample

A quantitative, cross-sectional survey design was employed. Data was collected from students across diverse universities in the North of Vietnam. Stratified random sampling ensured representation across various faculties. Participation was voluntary and anonymous. A total of 312 valid responses were obtained and described in the Table 1 (Response Rate: 68%).

Table 1. Sample Characteristics (N = 312)

Variable	Category	Frequency (n)	Percentage (%)
Gender	Female	181	58
	Male	131	42
Academic Year	1st Year	81	26
	2nd Year	72	23
	3rd Year	66	21
	4th Year	56	18
	> 4th Year	37	12
Field of Study	Natural Sciences	69	22
	Social Sciences	59	19
	Economics and Business	87	28
	Other	97	31

3.2. Measures

All constructs in this study were measured using five-point Likert-type scales ranging from "1" (Strongly Disagree) to "5" (Strongly Agree). The items were adapted from validated scales in previous research where Cronbach's α reported was above 0.80 to ensure construct validity and reliability. These measures have also been commonly applied in studies conducted in higher education institutions, including those in developing and Asian cultural contexts such as Vietnam,

where collectivist values may influence perception and behavior.

Academic Responsible Leadership

This study assessed students' perceptions of responsible leadership behaviors within higher education institutions by adapting four items from the Responsible Leadership Scale [8] and the Ethical Leadership Scale [13], tailored for the academic context. These items capture ethical decision-making and inclusive leadership practices. A sample item includes: "Leaders demonstrate high ethical standards in decision-making". Other items reflect leaders' consideration of long-term student outcomes and responsiveness to student voice.

Classroom Climate

Seven items were adapted from the Classroom Environment Scale - Short Form [5] to measure students' perceptions of the psychosocial classroom climate. This construct includes four dimensions: Support (e.g., "Collaborative learning is encouraged in my program"), Fairness (e.g., "Grading criteria in my courses are

transparent and fairly applied"), Respect (e.g., "Classroom discussions promote mutual understanding"), and Psychological Safety (e.g., "I feel safe to ask questions without fear of judgment").

Learning Motivation

Students' academic motivation was measured using six items adapted from the Academic Motivation Scale [14]. This scale captured three sub-dimensions: Intrinsic Motivation (e.g., "I study because I enjoy gaining new knowledge"), Extrinsic Motivation - Identified (e.g., "I study because it will help me achieve my career goals"), and Amotivation (reverse-coded). The analysis focused on the items representing positive motivation dimensions, which demonstrated acceptable internal reliability.

Control Variables

To account for potential confounding effects, this study included three control variables: gender, academic year, and field of study. Gender was measured as a binary variable (0 = male; 1 = female). Academic year was coded as a categorical variable indicating students' current level

Table 2. Standardized loading and reliability for measurement model

Construct	Item	Standardized loading	AVE	CR	Ca
Classroom Climate (CC)	7	-	0.818	0.969	0.96
	CC1	0.927			
	CC2	0.920			
	CC3	0.920			
	CC4	0.888			
	CC5	0.889			
	CC6	0.925			
	CC7	0.859			
Learning Motivation (LM)	3	-	0.807	0.926	0.92
	ILM1	0.920			
	ILM2	0.889			
	ILM3	0.885			
	3	-	0.788	0.881	0.88
	ELM1	0.893			
	ELM2	0.882			
	ELM3	0.888			
Academic Responsible Leadership (ARL)	4	-	0.766	0.929	0.92
	ARL1	0.905			
	ARL2	0.877			
	ARL3	0.883			
	ARL4	0.834			

of study (e.g., first year, second year, etc.). Field of study was included to control for disciplinary differences, as learning environments and leadership practices can vary substantially across academic domains (e.g., natural sciences, social sciences, economics and business, etc.).

4. DATA ANALYSIS AND RESULTS

4.1. Measurement model evaluation

We firstly examined the reliability of the measurement scales by calculating Cronbach's alpha (α) coefficients for each construct. All constructs demonstrated high internal consistency, with α values ranging from 0.88 to 0.96, exceeding the threshold of 0.70 recommended by [15]. To further validate the measurement model, confirmatory factor analysis (CFA) was conducted to assess convergent and discriminant validity (see Table 2).

4.1.1. Convergent validity

To evaluate convergent validity, we followed the criteria proposed by [16], which include standardized factor loadings (≥ 0.70), composite reliability ($CR \geq 0.70$), and average variance extracted ($AVE \geq 0.50$). As shown in Table 2, all factor loadings ranged from 0.834 to 0.927, CR values were between 0.881 and 0.969, and AVE values ranged from 0.766 to 0.818. These results provide strong support for convergent validity of all constructs.

4.1.2. Discriminant validity

Discriminant validity was assessed based on the [17] criterion, which states that the square root of the AVE for each construct should be higher than its correlation with any other construct. As shown in Table 3, all diagonal values (square roots of AVE) exceeded the inter-construct correlations, indicating good discriminant validity among the constructs.

Table 3. Descriptive statistics and construct correlations ($N = 312$)

Constructs	Mean	SD	ARL	CC	ILM	ELM
ARL	2.83	0.62	0.88			
CC	2.89	0.78	0.65***	0.90		
ILM	3.07	0.80	0.33***	0.41***	0.81	
ELM	3.23	0.79	0.34***	0.43***	0.45***	0.79

Note: $p^{***} < 0.001$

4.1.3. Model fit indices

To assess the overall goodness-of-fit of the measurement model, we examined fit indices included χ^2/df (CMIN/df), GFI, RMSEA, CFI, TLI. As presented in Table 4, all fit indices met the recommended thresholds (e.g., CMIN/df < 2.0 , RMSEA < 0.08 , CFI > 0.90), indicating that the model provides a satisfactory fit to the data.

Table 4. The fit indices of the CFA Model

Fit indices	Threshold values proposed	Scores achieved
Chi-square/df (CMIN/df)	$\leq 2^*; \leq 5^{**}$	0.931
GFI	$\geq 0.90^*; \geq 0.80^{**}$	0.965
RMSEA	$\leq 0.08^*; \leq 0.10^{**}$	0.000
CFI	$\geq 0.90^*; \geq 0.80^{**}$	1.000
TLI	$\geq 0.90^*$	1.001

Notes: * = good fit; ** = acceptable fit

4.2. Hypothesis Testing Results

The structural equation modeling (SEM) results provided strong empirical support for all hypothesized relationships (see Table 5). Specifically, ARL had a significant positive effect on both ILM ($\beta = 0.382$, $p = 0.001$) and ELM ($\beta = 0.228$, $p = 0.001$), supporting H1a and H1b, respectively. In line with H2, ARL also demonstrated a strong and significant influence on CC ($\beta = 0.893$, $p < 0.001$), indicating that responsible leadership practices strongly shape students' perceptions of support, fairness, and psychological safety in the learning environment.

Furthermore, classroom climate significantly predicted both ILM ($\beta = 0.379$, $p < 0.001$) and ELM ($\beta = 0.223$, $p = 0.001$), confirming H3a and H3b. Importantly, the indirect effects of ARL on ILM ($\beta = 0.269$, $p = 0.002$) and ELM ($\beta = 0.576$, $p = 0.002$) through CC were also statistically significant, supporting H4a and H4b.

Taken together, these results suggest that classroom climate partially mediates the effect of academic responsible leadership on both forms of learning motivation. The significance of both direct (ARL \rightarrow ILM/ELM) and indirect (ARL \rightarrow CC \rightarrow ILM/ELM) paths indicates that ARL influences students' learning motivation both directly - likely through ethical modeling and leadership visibility - and indirectly by shaping the learning environment. This pattern of partial mediation aligns with prior research [3] asserting that leadership exerts influence not only through structural or organizational channels but also via direct interpersonal signaling and value transmission mechanisms.

Table 5. SEM Results with Standardized Path Coefficients

Path	β (Standardized)	SE	p-value	Hypothesis	Support
ARL \rightarrow ILM	0.382	0.083	0.001	H1a	Yes
ARL \rightarrow ELM	0.228	0.049	0.001	H1b	Yes
ARL \rightarrow CC	0.893	0.071	0.000	H2	Yes
CC \rightarrow ILM	0.379	0.060	0.000	H3a	Yes
CC \rightarrow ELM	0.223	0.036	0.001	H3b	Yes

ARL → CC → ILM	0.269		0.002	H4a	Yes
ARL → CC → ELM	0.576		0.002	H4b	Yes

5. DISCUSSION AND KEY FINDINGS

This study provides compelling empirical evidence for the critical role of ARL in enhancing both intrinsic and extrinsic learning motivation among university students. By integrating Social Learning Theory, Self-Determination Theory, and JD-R model, the study presents a theoretically grounded explanation of how ethical and accountable academic leadership translates into motivational outcomes. Notably, the findings identify classroom climate as a powerful partial mediator, confirming that while ARL directly influences student motivation, its primary mechanism of impact is through shaping students' perceptions of fairness, support, respect, and psychological safety in the learning environment.

The strong direct effects of ARL on both intrinsic and extrinsic motivation suggest that leadership behaviors - such as ethical conduct, stakeholder engagement, and institutional transparency - serve not only as behavioral models (as predicted by Social Learning Theory) but also as motivational signals that students internalize. These effects are further amplified by the classroom climate, which emerged as a significant mediating factor. This dynamic validates the JD-R model's assertion that environmental resources (e.g., supportive climates) function as motivational assets that mitigate psychological strain and foster engagement [10]. By positioning ARL as a key driver of these resources, the study expands the JD-R framework into the domain of higher education leadership.

Moreover, the results align with prior research on ethical leadership [13], demonstrating that leaders' moral conduct and fairness shape subordinate attitudes through perceived legitimacy and trust. In the academic context, ARL fosters climates of mutual respect and safety, which in turn fulfill students' needs for autonomy, competence, and relatedness - core tenets of Self-Determination Theory [1]. The classroom climate's mediating role thus offers a robust organizational explanation of how leadership values at the institutional level are transmitted into psychological benefits at the student level.

This study is especially significant in distinguishing the pathways to intrinsic and extrinsic motivation. Both forms

were positively predicted by ARL and classroom climate, affirming that responsible leadership cultivates not only a love for learning but also a goal-oriented mindset aligned with academic and career aspirations. The evidence for partial mediation further suggests that while classroom climate is a central mechanism, responsible leadership may also influence motivation through other pathways, such as institutional culture or individual leader-student interactions.

5.1. Theoretical Contributions

This study makes several important theoretical contributions to the fields of leadership, educational psychology, and organizational behavior in higher education. First, it is among the first to empirically operationalize the concept of ARL in the university context, expanding the applicability of responsible leadership theory beyond its traditional corporate origins. By focusing on the ethical, stakeholder-centered, and sustainability-oriented behaviors of academic leaders, the study provides a contextualized model of leadership tailored to higher education institutions.

Second, the study contributes to theoretical advancement by identifying classroom climate as a mediating organizational mechanism through which ARL influences learning motivation. This insight adds precision to leadership theory in education by highlighting the environmental and relational conditions that transmit leadership effects. It also enhances the JD-R model by clarifying how institutional leadership creates psychosocial resources that buffer stress and stimulate student engagement.

Third, the integration of SDT into the framework provides a motivational explanation for how classroom climate activates both intrinsic and extrinsic learning motives. In doing so, the study bridges macro-level leadership theory with micro-level student psychology, offering a comprehensive model that links leadership ethics to concrete academic outcomes. This integrated perspective advances our understanding of how leadership values and behaviors shape students' motivational trajectories and educational experiences.

5.2. Practical Implications

In addition to its theoretical significance, this study offers several actionable insights for university leaders and policy makers. One key recommendation is to prioritize leadership development programs that cultivate responsible leadership competencies, such as

ethical reasoning, stakeholder responsiveness, long-term orientation, and transparency. These skills are particularly crucial for deans, department chairs, and senior faculty, whose decisions directly affect learning environments.

Second, the strong mediating role of classroom climate underscores the need for institutions to create supportive, inclusive, and psychologically safe educational settings. University leaders can act as role models by demonstrating respect, empathy, and fairness in both policy and daily interactions. Initiatives such as transparent grading systems, open feedback channels, and inclusive pedagogy can strengthen the relational climate and, in turn, student motivation.

Third, institutional governance structures should embed the principles of responsible leadership into strategic planning, faculty evaluation, and quality assurance mechanisms. Aligning institutional values with daily teaching and learning practices ensures consistency and fosters a student-centered academic culture. Such alignment not only supports student well-being and achievement but also strengthens the institution's legitimacy in a stakeholder-driven educational landscape.

5.3. Limitations and Future Directions

The results of this study showed that control variables such as gender, academic year, field of study demonstrated weak or non-significant associations with the key constructs, so future research can expand the model to include variables such as the level of student-leader interaction, instructor role, or other demographic characteristics so as to enhance the richness of the findings. This study is also limited by its cross-sectional design, which cuts down causal inference. Therefore, future study might adopt longitudinal and multi-level designs, as well as explore cross-cultural comparisons.

6. CONCLUSION

This study establishes that academic responsible leadership is not only a moral imperative but also a powerful driver of student motivation. Its effects are significantly mediated through the creation of a positive classroom environment characterized by support, fairness, respect, and safety. By demonstrating this important mediating mechanism, the study provides higher education institutions with clear argument and concrete insights: investing in the development of responsible academic leaders is a fundamental strategy for creating learning environments that promote and ultimately improve student success and engagement.

REFERENCES

- [1]. Ryan R. M., Deci E. L., "Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions," *Contemporary Educational Psychology*, 61, 2020.
- [2]. Sutherland K. A., "Constructions of success in academia: An early career perspective," *Studies in Higher Education*, 42(4), 743-759, 2018.
- [3]. Leithwood K., Levin B., "Understanding how leadership influences student learning," *International Encyclopaedia of Education*, 45-50, 2010.
- [4]. Maak T., Pless N. M., "Responsible leadership in a stakeholder society: A relational perspective," *Journal of Business Ethics*, 66(1), 99-115, 2006.
- [5]. Fraser B. J., Tobin K. G., McRobbie C. J., Eds, "Classroom learning environments: Retrospect, context and prospect," *Second International Handbook of Science Education*, 1191-1239, 2012.
- [6]. Komarraju M., "Ideal teacher behaviors: Student motivation and self-efficacy predict preferences," *Teaching of Psychology*, 40(2), 104-110, 2013.
- [7]. Islam M. S., Fujimoto Y., Haque A., Hossain M. I., "Responsible leadership in higher education in developing countries," *Higher Education*, 89, 465-485, 2025.
- [8]. Voegtlin C., "Development of a scale measuring discursive responsible leadership," *Journal of Business Ethics*, 98(1), 57-73, 2011.
- [9]. Parr A., Mokrova I., Vernon-Feagans L., "Classroom climate and children's academic and psychological wellbeing: A systematic review and meta-analysis," *Developmental Review*, 57, 2020.
- [10]. Howard J. L., Bureau J., Guay F., Chong J. X. Y., Ryan R. M., "Student motivation and associated outcomes: A meta-analysis from self-determination theory," *Perspectives on Psychological Science*, 16(6), 1300-1323, 2021.
- [11]. Bandura A., *Social Learning Theory*. Prentice Hall, 1977.
- [12]. Bakker A. B., Demerouti E., "The Job Demands-Resources model: State of the art," *Journal of Managerial Psychology*, 22(3), 309-328, 2007.
- [13]. Brown M. E., Treviño L. K., Harrison D. A., "Ethical leadership: A social learning perspective for construct development and testing," *Organizational Behavior and Human Decision Processes*, 97(2), 117-134, 2005.
- [14]. Vallerand R. J., Pelletier L. G., Blais M. R., Brière N. M., Sénéchal C., Vallières E. F., "The Academic Motivation Scale: A measure of intrinsic, extrinsic, and amotivation in education," *Educational and Psychological Measurement*, 52(4), 1003-1017, 1992.
- [15]. Nunnally J. C., Bernstein I. H., *Psychometric Theory*, 3rd ed. McGraw-Hill, 1994.
- [16]. Hair J. F., Black W. C., Babin B. J., Anderson R. E., Tatham R. L., *Multivariate Data Analysis*, 6th ed. Pearson Education, 2006.
- [17]. Fornell C., Larcker D. F., "Evaluating structural equation models with unobservable variables and measurement error," *Journal of Marketing Research*, 18(1), 39-50, 1981.
- [18]. Preacher K. J., Hayes A. F., "Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models," *Behavior Research Methods*, 40(3), 879-891, 2008.

THÔNG TIN TÁC GIẢ

Lê Xuân Huyền

Trường Ngoại ngữ - Du lịch, Trường Đại học Công nghiệp Hà Nội