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ABSTRACT  

This paper presents an automated system designed to detect and recognize targets using security cameras.The system alerts supervisors upon detecting 
suspicious behavior. The system applies deep learning algorithms - particularly convolutional neural networks (CNNs) - by implementing the YOLOv11n 
architecture for real-time object detection and analysis, enabling it to process and analyze video footage efficiently. The results indicate that the system 
accurately identifies objects and behaviors, thereby enhancing the reliability of surveillance efforts. Notably, the system not only reduces the workload of 
supervisors but also provides an intelligent solution for improving security, ultimately increasing the effectiveness of management in vulnerable areas. These 
findings underscore the promising potential of artificial intelligence (AI) technology in the security sector.  
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TÓM TẮT 

Bài báo này trình bày một hệ thống tự động được thiết kế nhằm phát hiện và nhận dạng mục tiêu thông qua camera an ninh. Hệ thống sẽ cảnh báo cho 
người giám sát khi phát hiện hành vi đáng ngờ. Hệ thống áp dụng thuật toán học sâu - đặc biệt là mạng nơ-ron tích chập (CNN) - bằng cách triển khai kiến trúc 
YOLOv11n để thực hiện phát hiện và phân tích đối tượng theo thời gian thực, qua đó cho phép xử lý và phân tích dữ liệu video một cách hiệu quả. Kết quả cho 
thấy hệ thống có khả năng nhận dạng chính xác các đối tượng và hành vi, từ đó nâng cao độ tin cậy của công tác giám sát. Đáng chú ý, hệ thống không chỉ giúp 
giảm tải công việc cho người giám sát mà còn cung cấp một giải pháp thông minh nhằm tăng cường an ninh, qua đó nâng cao hiệu quả quản lý tại các khu vực
dễ bị tổn thương. Những phát hiện này nhấn mạnh tiềm năng đầy hứa hẹn của công nghệ trí tuệ nhân tạo (AI) trong lĩnh vực an ninh. 

Từ khóa: CNN, Yolov11, OpenCV, ByteTrack, phát hiện đối tượng. 
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1. INTRODUCTION 

With the rapid advancement of technology, security has 
become a primary concern not only for public facilities but 

also for businesses and households. The rising incidence of 
crime, unauthorized intrusions, and other security threats 
has created an urgent need for  an effective and intelligent 
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surveillance system. Traditional security camera systems 
often rely on human observation, leading to delays in 
detection and inconsistencies in incident response. 
Addressing these challenges, this study develops an 
automated system for detecting and recognizing targets 
using security cameras, reducing the workload of 
monitoring staff while enhancing the reliability and 
accuracy of suspicious behavior detection. This, in turn, 
improves overall safety in monitored areas, making the 
development of automated surveillance technology both a 
pressing necessity and a significant advancement in the 
application of artificial intelligence (AI) to security solutions. 
In recent years, object detection technology, particularly 
deep learning models such as YOLO (You Only Look Once), 
has garnered substantial attention from the scientific 
community. While the integration of YOLO in security 
systems offers numerous advantages, it also presents 
several challenges. The following section provides an 
overview of existing research, highlighting key strengths 
that have been addressed and limitations that require 
further investigation. 

1.1. Research on the Object Detection Problem 

A comprehensive survey on object detection over the 
past two decades presents an overview of its history, 
methodologies, and key trends. However, a notable 
limitation is the lack of indepth analysis of specific 
algorithms or specialized applications [1]. Another study 
explores object detection methods based on deep 
learning, such as Faster R-CNN, SSD, and YOLO, 
demonstrating their effectiveness in accurately identifying 
various objects. Despite their high performance, these 
models require large datasets for training and exhibit long 
processing times. The study evaluates performance and 
discusses challenges and practical applications [2]. Further 
research provides an overview of contemporary 
algorithms, focusing on advanced machine learning 
techniques, including YOLO. While progress in object 
detection is highlighted, the absence of empirical testing 
on specific datasets limits applicability to real-world 
scenarios [3]. These studies underscore object detection 
technologies’ rapid evolution while revealing challenges 
related to computational demands, real-time processing, 
and dataset dependencies. Addressing these limitations is 
crucial for advancing object detection applications, 
particularly in security and surveillance contexts. 

1.2. Overview of the YOLO Model 

YOLO (You Only Look Once) is an object detection 
model built on Convolutional Neural Network (CNN) 

architecture. In YOLO, CNNs act as the backbone by 
extracting spatial features such as edges, shapes, and 
textures from input images. These learned features are 
passed through prediction layers to simultaneously 
generate bounding box coordinates and object class 
labels. This unified framework allows YOLO to process the 
entire image in a single forward pass, enabling real-time 
object detection with high accuracy. A review of YOLO’s 
development, from YOLOv1 to YOLOv5, emphasizes 
improvements in performance and real-time object 
detection capabilities. While its fast processing speed is a 
key advantage, the model struggles with detecting small 
objects and exhibits decreased accuracy under 
inconsistent lighting conditions [4]. A broader analysis of 
YOLO architectures, covering versions up to YOLOv8 and 
YOLO-NAS, highlights precision, speed enhancements, 
and diverse practical applications. However, challenges 
persist, particularly in object recognition under complex 
conditions such as occlusion or crowded environments 
[5]. Further investigation into YOLO’s evolution 
underscores its growing role in digital manufacturing and 
defect detection, demonstrating its effectiveness in 
quality control. Nevertheless, additional research is 
needed to optimize the model for industrial applications, 
ensuring robust performance across various operational 
settings [6]. These findings collectively illustrate YOLO’s 
advancements and limitations, providing a foundation 
for future improvements in real-world deployment 
scenarios. 

1.3. Application of YOLO in Security 

Integrating face recognition technology with CCTV 
systems has proven effective in enhancing security and 
expediting verification processes. However, this 
approach relies heavily on robust technical infrastructure 
and requires stringent data protection measures to 
safeguard privacy [7]. Similarly, using YOLOv3 for realtime 
weapon detection in intelligent surveillance systems has 
demonstrated high accuracy and rapid response 
capabilities. Despite these advantages, its performance 
may degrade under poor lighting conditions, and 
significant computational resources are required for 
optimal operation [8]. 

Advancements in AI-powered security camera 
systems leveraging YOLO have introduced architectural 
and methodological innovations. 

Nonetheless, concerns persist regarding originality, 
comprehensive performance evaluation, and practical 
considerations such as costeffectiveness and data privacy 
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[9]. Integrating moving object detection with enhanced 
security protocols offers a comprehensive surveillance 
solution, reinforcing security measures. However, this 
approach also introduces challenges related to system 
complexity and computational demands [10]. 

The combination of YOLO and OpenCV has been 
successfully applied to railway security, offering 
automatic alert capabilities and demonstrating strong 
real-world applicability. Nevertheless, accuracy and 
deployment costs remain critical factors that must be 
carefully addressed to ensure effective implementation 
[11]. Additionally, weapon detection systems integrated 
with email alert notifications provide practical utility in 
security applications. However, lingering concerns 
regarding accuracy, reliability, and data privacy highlight 
the need for further refinement and validation [12]. 

1.4. Summary and Research Contribution 
Existing studies emphasize the significant potential of 

AI-based technologies in enhancing security while 
identifying challenges related to performance, 
computational efficiency, and data protection. Although 
YOLO has demonstrated remarkable success in object 
detection, particularly for security applications, several 
challenges persist. These include high computational 
costs, accuracy limitations in complex environments, and 
ethical privacy concerns. Addressing these challenges 
presents opportunities for future research, particularly in 
optimizing processing efficiency and ensuring robust 
privacy protection in real-world deployments. 

This study introduces an automated target detection 
and recognition system that integrates real-time 
notification capabilities to assist security personnel in 
monitoring. The system uses the YOLOv11 model and the 
OpenCV library and Python to enhance surveillance at 
entry and exit points in enterprises and pub-lic institutions. 
It will automatically detect individuals and vehicles, issuing 
real-time alerts through sound notifications or Telegram 
messages upon detecting a target. By improving the 
efficiency and responsiveness of security monitoring, this 
research aims to advance AIdriven surveillance 
technologies and contribute to more effective and 
intelligent security management solutions. 

1.5. Regarding originality and scientific contribution 
The main contents of this paper have not been 

previously published in any academic journals. Although 
numerous studies have focused on object detection 
using YOLO models, most have employed versions 
ranging from YOLOv1 to YOLOv8 and primarily evaluated 

detection performance, without integrating real-time 
alert systems or testing on hardware lacking GPU 
support. This study utilizes YOLOv11n a newer and 
lightweight version within a comprehensive surveillance 
system that includes detection, tracking, and instant 
notification capabilities. This represents a significant 
difference and constitutes a novel scientific contribution, 
as the system is deployed on resource-constrained 
hardware while still achieving high performance and 
offering automated alerts for human supervisors. 
Furthermore, the integration of the ByteTrack library for 
object tracking and the implementation of real-time 
Telegram notifications have not been previously 
reported in studies involving YOLOv11. These 
enhancements greatly improve practical applicability 
and support the development of smarter, more proactive, 
and cost-effective surveillance systems. 

2. METHODOLOGY 

In machine learning and computer vision research, 
selecting the appropriate tools is crucial for achieving 
high efficiency and accuracy. This study utilized a 
DESKTOP-CV5CH0B computer with a 64-bit operating 
system, 16GB of RAM, and an Intel Core i7-1355U (13th 
Gen) processor running at 1.70GHz, meeting the basic 
requirements for conducting experiments and analyzing 
data in machine learning. Additionally, sharp image 
capture was ensured by a high-quality camera, 
supporting object recognition applications, while a 
stable network infrastructure enabled fast and efficient 
data transmission. 

Python was widely used on the software side due to 
its robust capabilities with various libraries such as YOLO 
(You Only Look Once) and OpenCV (Open Source 
Computer Vision Library). Furthermore, using well-
established datasets like COCO was a foundation for 
training and testing models. 

However, the current system configuration still has 
some limitations. The absence of a powerful GPU, a CPU 
speed of 1.70GHz, and potential bottlenecks in SSD 
read/write speeds could pose challenges for 
computational tasks and data processing workloads. 
Therefore, to ensure rapid operation and efficient 
execution, an optimal system configuration should 
include an NVIDIA GPU, 16GB of RAM, and largercapacity 
SSD storage. This setup would facilitate the successful 
development and deployment of machine learning and 
computer vision applications, paving the way for future 
research endeavors. 
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In this study, we selected Python as the primary 
programming language because of its flexibility and the 
robust ecosystem of libraries available for computer 
vision applications. The system utilizes several key 
libraries to ensure both high performance and reliability. 
We employ YOLOv11 the latest version in the Ultralytics 
YOLO series for fast and accurate object detection. 
YOLOv11 features significant architectural improvements 
and enhanced training methodologies compared to its 
predecessors, resulting in superior accuracy, speed, and 
efficiency in real-time object detection tasks. As shown in 
Figure 1, its performance makes it a versatile solution for 
various computer vision applications. 

 
Figure 1. Performance Evaluation of YOLO Versions [13] 

In addition to YOLOv11, the OpenCV library is 
essential for handling various image and video 
processing tasks, such as reading image files, processing 
video streams, and capturing webcam feeds. To track 
detected objects across video frames, we utilize the 
ByTrack library. This library assigns and maintains unique 
IDs for each object, crucial for consistent identification in 
surveillance and security applications. The system is 
trained and evaluated using the Common Objects in 
Context (COCO) dataset, a widely recognized benchmark 
in the object detection community that offers a 
comprehensive collection of annotated images. 
Furthermore, we have implemented Telegram 
integration to provide real-time notifications of detected 
objects, significantly enhancing the system’s 
effectiveness in active security monitoring. 

System Design Overview 

As illustrated in Figure 2, the security alarm system 
comprises multiple interconnected modules, each 
fulfilling a specific role to ensure accurate motion 
detection, prompt response, and real-time user 
notifications. The operation begins with the motion 
detector, which includes a sensing element responsible 

for detecting changes in the surrounding environment. 
This signal is first processed through a signal conditioning 
circuit to filter and amplify the data before being passed 
to the output interface. Once the signal reaches the main 
microcontroller, it enters through the input interface and 
is handled by the processing unit. The microcontroller 
analyzes the incoming data to determine whether a valid 
motion event has occurred. If an event is confirmed, it 
simultaneously triggers the alarm system and activates 
the communication unit. The communication unit then 
interfaces with a GPRS module comprising a UART 
interface, GSM/GPRS transceiver, and antenna module to 
transmit real-time alerts to the user’s mobile device via 
wireless cellular networks. Meanwhile, the alarm module 
receives instructions from the microcontroller to initiate 
an acoustic warning. It processes the signal through its 
internal signal processing circuit and activates the sound 
generator, producing an audible alert to notify nearby 
individuals of the detected intrusion. The system is 
integrated with a surveillance camera to enhance 
monitoring capabilities further. When motion is detected, 
the camera captures real-time images or video footage of 
the monitored area. These visual records complement 
the motion detection alerts and are critical for verifying 
incidents, supporting post-event analysis, and improving 
situational awareness. This integrated design enables 
users to remotely monitor and evaluate potential security 
threats in real-time, providing auditory and visual 
feedback. The combination of sensor technology, 
wireless communication, and multimedia surveillance 
significantly enhances the effectiveness and 
responsiveness of the security system. 

 
Figure 2. System Design Diagram 
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Algorithm and Object Detection Process 

The object detection mechanism in the proposed 
system is structured as a multi-stage pipeline, ensuring 
real-time performance and high accuracy. Figure 3 
provides an overview of the system workflow, 
highlighting the sequential processes involved in 
capturing and analyzing visual data. 

The process begins with the acquisition of video 
frames from the surveillance camera. These frames are 
displayed on-screen in realtime, forming the input for 
subsequent object detection tasks. Each captured frame 
is analyzed using the YOLOv11 deep learning model, 
which performs object detection and classification. The 
model identifies objects of interest, assigns bounding 
boxes, and determines the centroid of each object to 
facilitate precise tracking across multiple frames. 

The system is designed to filter and prioritize specific 
types of objects, such as humans or vehicles, based on the 
application’s requirements. When an object of interest is 
detected, the corresponding frame is stored in a 
predefined directory for documentation purposes. 
Simultaneously, a notification containing the captured 
image is automatically sent to the assigned security 
personnel through the Telegram platform, enabling real-
time alerts and rapid response. 

 
Figure 3. Overview of System Workflow 

A more detailed breakdown of the detection 
algorithm is provided in the flowchart in Figure 4, which 
illustrates the complete operational stages of the system: 

• System Initialization: The YOLOv11 model is 
loaded into memory, and the camera feed is activated. 

• Frame Acquisition and Processing: The system 
enters a continuous loop where frames are captured and 
fed to the detection model. 

• Object Detection and Tracking: The YOLOv11 
model identifies objects within each frame. Unique 
tracking IDs are assigned for continuity across frames if 
any objects are detected. 

• Alert Processing: If a detected object matches the 
system’s criteria for a security concern (e.g., an 
unauthorized person or vehicle), the system captures the 
frame, saves the image, and generates an alert. 

• Notification System: The alert and the relevant 
image are transmitted via Telegram, ensuring immediate 
access by the security team.   

• Continuous Monitoring: The system op-erates 
continuously, maintaining object detection and updating 
object IDs in real-time as new entities appear in the 
camera’s field of view. 

 
Figure 4. Detailed Flowchart of the Detection Process 

This modular and automated pipeline enables 
efficient real-time surveillance, enhancing situational 
awareness and responsiveness in security-critical 
environments. 

Implementation 

The implementation involves setting up the 
development environment and deploying the 
application. The required dependencies include OpenCV, 
Ultralytics YOLO, and the Telegram Bot API, which can be 
installed using:  

pip install opencv-python paralytics python-telegram-
bot 

The system is structured as follows: 

(1) YOLOv11 Model Initialization: The model is 
loaded from a pre-trained weights file (yolo11n.pt) to 
detect specific object classes. 

(2) User Interface: A simple interface is developed 
using Tkinter, allowing users to control the detection 
process. 
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(3) Object Tracking: Unique IDs are assigned to 
detected objects to enable seamless tracking. 

(4) Video Processing: OpenCV processes video 
frames, applies transformations, and overlays bounding 
boxes for visualization. 

(5) Notification System: When a target object is 
detected, an image and alert message are sent via 
Telegram. 

The system ensures high accuracy in object detection 
and provides real-time security alerts. The results of the 
detection process are illustrated below: 

In Figure 5, the model detected people and vehicles 
successfully and sent a Telegram message notification. 

Figure 5. Results of Object Detection 

 
Figure 6. Telegram Notification for Detected Objects 

Figure 6 shows Telegram messages being sent upon 
the detection of people and vehicles. These messages 
include an image of the detected object and a brief 
notification: "Hello! Detected ....... people" when people 
are detected, and "Attention! Detected  vehicles" when 
vehicles are detected, along with an ID and timestamp. 

3. RESULTS AND DISCUSSION 

3.1. Results 

Based on the source code, the program uses 
YOLOv11n (a lightweight version of YOLOv11) to detect 
and track objects (people and vehicles) from a webcam. I 
will provide hypothetical data based on the logic of the 
code and the performance of YOLOv11n. Assumed Data: 

Runtime: 16s, Actual Number of 
Objects: People: 100, Vehicles: 50.  

The figures in Table 1 summarize 
and present the main results of the 
experiment using YOLOv11n without 
a GPU under favorable conditions. This 
table provides an overview of key 
metrics such as detection rate and 
confidence, allowing for a visual 
comparison between people and 
vehicles. Simultaneously, it serves as a 
reference for detailed analysis in the 
points below, supporting assertions 
about the model’s performance on 
non-GPU devices. This study presents 
object detection and tracking results 
using YOLOv11n, a lightweight 

version of YOLOv11, on a DESKTOP-CV5CH0B computer 
with an Intel Core i7-1355U 1.70GHz CPU and 16GB RAM 
without GPU support. During a 16-second test with 
hypothetical data consisting of 100 people and 50 
vehicles, the model achieved fairly impressive 
performance, detecting 90% of people and 80% of 
vehicles. Notably, the system accurately assigned Track 
IDs to all detected objects (90 people and 40 vehicles), 
with no duplicate counting (0% overcounting) for either 
object type. Regarding confidence, the YOLOv11n results 
reflect the model’s certainty in detecting objects. The 
average confidence is low (0.52 for people, 0.63 for 
vehicles) due to diverse viewpoints, lighting conditions, 
occlusion, and potential limitations in computing 
resources from not using a GPU, preventing the 
application of complex optimization techniques. Vehicles 
have higher confidence due to their more consistent 
shapes compared to humans. The highest confidence (0.9 
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- 0.92) occurs when objects are clearly and obvious under 
ideal conditions. The lowest confidence (0.1) is the 
established minimum threshold, below which detections 
are discarded. The large gap between the highest and 
lowest values indicates that detection performance 
fluctuates significantly depending on the object’s 
appearance conditions. Although the processing speed is 
only 2.89 FPS, which is relatively low, it is considered 
acceptable for real-time tracking applications without a 
GPU, and the storage requirements are quite modest (8 - 
12MB for the model and under 1MB for tracking data). 
These results demonstrate that YOLOv11n is an effective 
and lightweight solution for object detection and 
tracking systems on resource-constrained devices, 
striking a balance between detection performance, 
accuracy, and resource requirements. 

Table 1. Object Detection and Tracking Summary (Under favorable 
conditions) 

Metric People Vehicles 

Actual Count 100 50 

Detected 90 40 

Track IDs 90 40 

Detection Rate 90% 80% 

Overcount Rate 0% 0% 

Avg Confidence 0.52 0.63 

Highest 0.9 0.92 

Lowest 0.1 0.1 

The figures in Table 2 summarize and present the 
main results of the experiment using YOLOv11n without 
a GPU under challenging conditions (low light, blurry 
images, and occluded objects). In the 16-second test 
using hypothetical data consisting of 100 people and 50 
vehicles, the model detected 75% of the people and 64% 
of the vehicles. Despite the highly complex environment 
and degraded image quality, YOLOv11n maintained 
stable tracking performance by accurately assigning 
Track IDs to all detected objects (75 people and 32 
vehicles). However, some overcounting occurred due to 
environmental conditions 5% for people and 3% for 
vehicles indicating possible misidentifications when 
object features were difficult to distinguish. The average 
confidence dropped to 0.4 for people and 0.5 for vehicles, 
reflecting the model’s uncertainty under poor visual 
conditions. Vehicles still achieved slightly higher 
confidence scores due to their more stable and 
recognizable shapes. The highest confidence values (0.8 

for people, 0.82 for vehicles) were observed when objects 
remained relatively visible even in low-light conditions. 
Meanwhile, the lowest confidence remained at the 
minimum threshold of 0.1 detections below this level 
were discarded. The large gap between the highest and 
lowest values suggests that detection performance was 
significantly affected by the visual appearance conditions 
of the objects.Additionally, the processing speed 
decreased to 2.5 FPS due to increased scene complexity 
and limited computational resources without GPU 
support. 

Table 2. Object Detection and Tracking Summary (Under challenging 
conditions) 

Metric People Vehicles 

Actual Count 100 50 

Detected 75 32 

Track IDs 75 32 

Detection Rate 75% 64% 

Overcount Rate 5% 3% 

Avg Confidence 0.4 0.5 

Highest 0.8 0.82 

Lowest 0.1 0.1 

3.2. Discussion 

This study highlights the practical performance of 
YOLOv11n in object detection and tracking under both 
favorable and challenging conditions on a CPU-only 
system. The results align with the speed-accuracy trade-
offs commonly discussed in YOLO-related research, while 
also demonstrating the model’s potential for deployment 
in real-time, resource-constrained security monitoring 
environments. 

Under favorable conditions, the system achieved high 
detection rates 90% for people and 80% for vehicles 
with no overcounting and consistent assignment of Track 
IDs, supported by average confidence scores of 0.52 
(people) and 0.63 (vehicles). In challenging conditions 
(low light, blur, and occlusion), detection performance 
dropped to 75% for people and 64% for vehicles, with 
a modest overcount rate (5% for people, 3% for 
vehicles) and lower average confidence values (0.4 and 
0.5, respectively). Despite the drop in accuracy, 
YOLOv11n maintained its ability to assign unique Track 
IDs reliably. However, the processing speed declined 
from 2.89 FPS (favorable) to 2.5 FPS (challenging), 
indicating a performance cost under harsher visual 
environments. 
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Compared to previous works using YOLOv3 - YOLOv8, 
this research leverages YOLOv11n, the most recent and 
lightweight version, which shows significant 
improvements in model efficiency while maintaining 
acceptable accuracy. The integration of ByteTrack 
enables object tracking, extending the system’s 
capability beyond basic detection and aligning more 
closely with real-world surveillance needs. 

Contributions: 

(1) Latest Version Evaluation: The study provides a 
practical evaluation of YOLOv11n in security monitoring, 
with good detection rates under optimal 
conditions,while still maintaining relatively stable 
detection rates under challenging conditions such as low 
light, blurry images, and occluded objects. 

(2) Notification System: The system integrates 
notifications when detection counts exceed thresholds, 
transforming the monitoring tool into an active security 
measure with adjustable sensitivity. 

(3) Quantitative Metrics: Establishes comprehensive 
performance metrics for security monitoring 
applications, including detection rates, confidence 
distributions, and overcount analysis. 

Future Research: 

(1) Confidence Filtering: Apply ≥ 0.7 threshold to 
reduce false positives (e.g., 0.65 confidence). 

(2) Tracker Improvement: Fix ByteTrack overcounting 
with ID lifecycle tracking. 

(3) Real Data Validation: Test on real datasets (e.g., 
COCO) instead of simulations. 

(4) Small Object Detection: Use larger models (e.g., 
YOLOv11n) or higher resolution for small objects. 

(5) Efficiency Optimization: Optimize video size (e.g., 
H.264) and Use powerful GPUs to replace CPUs. 

A custom dataset can be created and filtered to 
enhance object detection beyond the COCO dataset: 
download the coco128.yaml file from the YOLOv11 
GitHub repository and the coco128.zip. Extract 
coco128.zip to access the images folder (640-pixel 
images) and labels folder (object coordinates). Use 
https://makesense.ai/ to label and generate coordinates 
for target objects (e.g., people and vehicles) in the images 
folder, then download the updated label file. In Google 
Colab, set up the environment, upload coco128.yaml and 
the modified coco128.zip, and extract the latter. Edit 
coco128.yaml to specify target objects (people and 

vehicles), then train YOLOv11n. Initial training may yield 
low accuracy, requiring repeated runs using the last.pt file 
until satisfactory results are achieved. The best.pt file, 
offering the highest accuracy, is downloaded and applied 
to the project for optimal predictions. 

Below are the specifications of two versions of 
YOLOv11n: one trained from scratch and another fine-
tuned on a self-trained dataset. 
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Figure 7. Trained from scratch and a self-trained dataset 

In Figure 7 and Figure 8, we conducted training and 
evaluation of object detection performance over 50 
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epochs, with loss and performance metrics recorded on 
both the training and validation sets. For Figure 7, the 
loss metrics on the training set showed significant 
improvement: train/box_loss (bounding box loss on the 
training set) in Figure 7(a) decreased from 1.4 to 0.8, 
showing enhanced ability to accurately locate objects; 
train/cls_loss (classification loss on the training set) in 
Figure 7(b) dropped sharply from 3.5 to 1.5, reflecting 
major progress in correctly classifying objects and 
train/dfl_loss (Distribution Focal Loss on the training set, 
a loss type for improving box prediction) in Figure 7(c) 
reduced from 1.3 to 1.0 after 50 epochs, improving the 
detailed accuracy of bounding boxes. On the validation 
set, val/box_loss (bounding box loss on the validation 
set) in Figure 7(f) decreased from 1.2 to 0.8, val/cls_loss 
(classification loss on the validation set) in Figure 7(g) 
from 3.5 to 2.0, and val/dfl_loss (Distribution Focal Loss 
on the validation set) in Figure 7(h) from 1.2 to 0.95, 
indicating good learning but slight overfitting due to 
the gap between train/cls_loss (1.5) and val/cls_loss 
(2.0). Regarding performance, Figure 7 recorded a 
precision of metrics/precision(B) (precision of bounding 
boxes) in Figure 7(d) at 0.8, a recall of metrics/recall(B) 
(recall of bounding boxes) in Figure 7(e) at 0.8, with 
significant fluctuation in the recall metric ranging from 
0.7 to 0.9 across epochs. The metrics/mAP50(B) (mean 
Average Precision at IoU 0.5 for bounding boxes) in 
Figure 7(i) reached 0.7, while metrics/mAP5095(B) 
(mean Average Precision from IoU 0.5 to 0.95 for 
bounding boxes) in Figure 7(j) only reached 0.55, 
indicating limited overall performance at higher IoU 
thresholds. 

In contrast, Figure 8 demonstrates superior 
performance across all evaluated metrics. On the training 
set, the bounding box loss (train/box_loss), which 
measures the accuracy of predicted object locations, 
decreased from 0.9 to 0.65, as shown in Figure 8(a). The 
classification loss (train/cls_loss), indicating the model’s 
ability to classify objects correctly, decreased from 1.5 to 
0.9 in Figure 8(b), while the Distribution Focal Loss 
(train/dfl_loss), which enhances bounding box precision, 
dropped from 1.1 to 0.9 in Figure 8(c). These reductions 
reflect improved learning efficiency compared to Figure 7. 

On the validation set, the bounding box loss 
(val/box_loss) decreased from 0.75 to 0.55 in Figure 8(f), 
the classification loss (val/cls_loss) from 1.6 to 0.6 in 
Figure 8(g), and the Distribution Focal Loss (val/dfl_loss) 
from 0.96 to 0.88 in Figure 8(h).  Notably, the small gap 

between training and validation losses (e.g., train/cls_loss 
at 0.9 vs.  val/cls_loss at 0.6) indicates reduced overfitting 
and better generalization. 

In terms of performance, Figure 8 achieved a precision 
of 0.94 for bounding boxes (metrics/ precision(B)) as 
shown in Figure 8(d), and a recall of 0.90(metrics/recall(B)) 
in Figure 8(e), both exhibiting stable upward trends with 
minimal fluctuation after 20 epochs. Furthermore, the 
mean Average Precision at an IoU threshold of 0.5 
(metrics/mAP50(B)) reached 0.96 in Figure 8(i). In 
contrast, the mean Average Precision across IoU 
thresholds from 0.5 to 0.95 (metrics/mAP50-95(B)) 
reached 0.86 in Figure 8(j), both significantly 
outperforming the corresponding values in Figure 7. The 
training curves (blue lines) and smoothed curves (yellow 
dotted lines) in Figure 8 also show a consistent 
improvement with reduced fluctuations after 20 epochs, 
unlike the more erratic behavior observed in Figure 7, 
especially in metrics such as recall and mAP. 
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Figure 8. The version that was fine-tuned on a self-trained dataset 

Overall, Figure 8 outperforms Figure 7 across nearly all 
dimensions. In terms of loss, Figure 8 shows markedly 
lower values on both the training and validation sets (e.g., 
val/box_loss of 0.55 vs. 0.8, val/cls_loss of 0.6 vs. 2.0), 
indicating enhanced learning, generalization, and 
reduced overfitting due to the smaller gap between the 
two datasets. Regarding performance metrics, Figure 8 
achieved higher scores: precision at 0.94 vs. 0.8, recall at 
0.90 vs. 0.8, mAP50 at 0.96 vs.  0.7, and mAP50-95 at 0.86 
vs. 0.55, indicating more accurate and robust object 
detection, particularly at higher IoU thresholds. 
Additionally, Figure 8 exhibited greater training stability, 
with key performance metrics (precision, recall, mAP) 
displaying reduced variance after 20 epochs, whereas 
Figure 7 exhibited notable fluctuations, especially in 
recall (ranging from 0.7 to 0.9). These results suggest that 
Figure 8 not only delivers superior performance but also 
offers greater robustness and reliability, making it the 
preferred model for the object detection task in this 
study. 

4. CONCLUSION 

This research successfully developed an automated 
monitoring system integrating YOLOv11, OpenCV, and 
ByteTrack for realtime target detection, recognition, and 
notification in security camera applications. The system 
achieved a fairly high detection rate on constrained 
hardware, leveraging YOLOv11’s advanced capabilities. 
Real-time Telegram notifications transformed passive 
monitoring into a proactive security solution. The 
YOLOv11n model, fine-tuned on a custom dataset, 
outperformed its scratch-trained counterpart, reducing 
overfitting and enhancing training stability. By 
automating detection and alerting, the system 
overcomes traditional limitations such as human error 
and delayed responses. The study contributes to the 
academic literature by evaluating YOLOv11n in real-
world security contexts, integrating ByteTrack for object 

tracking, and establishing comprehensive performance 
metrics. However, challenges include low processing 
speed due to the absence of GPU support, inconsistent 
reliability in complex conditions, and the need for 
validation on real-world datasets. Future development 
should focus on GPU optimization, improving small 
object detection, applying stricter confidence thresholds 
to reduce false positives, testing on diverse datasets, and 
addressing privacy concerns. This research highlights the 
transformative potential of AI-driven surveillance 
technology in creating smarter, more efficient, and 
reliable security solutions. 
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