
P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 61 - No. 7 (July 2025) HaUI Journal of Science and Technology 91

AUTOMATED INTEGRATION OF DETECTION ALGORITHMS,
TARGET RECOGNITION AND NOTIFICATION
TO SECURITY CAMERA SUPERVISORS
TÍCH HỢP TỰ ĐỘNG CỦA CÁC THUẬT TOÁN PHÁT HIỆN, NHẬN DẠNG MỤC TIÊU VÀ THÔNG BÁO
CHO NGƯỜI GIÁM SÁT CAMERA AN NINH

Tran Thi Thuy Linh1, Hoang Trong Nghia1,*,
Nguyen Thi Ngoc1, Tran Thi My Kim1,

Nguyen Van Son1, Nguyen Hoai Giang1, Vu Duy Thuan2

DOI: https://doi.org/10.57001/huih5804.2025.282

ABSTRACT

This paper presents an automated system designed to detect and recognize targets using security cameras.The system alerts supervisors upon detecting
suspicious behavior. The system applies deep learning algorithms - particularly convolutional neural networks (CNNs) - by implementing the YOLOv11n
architecture for real-time object detection and analysis, enabling it to process and analyze video footage efficiently. The results indicate that the system
accurately identifies objects and behaviors, thereby enhancing the reliability of surveillance efforts. Notably, the system not only reduces the workload of
supervisors but also provides an intelligent solution for improving security, ultimately increasing the effectiveness of management in vulnerable areas. These
findings underscore the promising potential of artificial intelligence (AI) technology in the security sector.

Keywords: CNN, Yolov11, OpenCV, ByteTrack, object detection.

TÓM TẮT

Bài báo này trình bày một hệ thống tự động được thiết kế nhằm phát hiện và nhận dạng mục tiêu thông qua camera an ninh. Hệ thống sẽ cảnh báo cho
người giám sát khi phát hiện hành vi đáng ngờ. Hệ thống áp dụng thuật toán học sâu - đặc biệt là mạng nơ-ron tích chập (CNN) - bằng cách triển khai kiến trúc
YOLOv11n để thực hiện phát hiện và phân tích đối tượng theo thời gian thực, qua đó cho phép xử lý và phân tích dữ liệu video một cách hiệu quả. Kết quả cho
thấy hệ thống có khả năng nhận dạng chính xác các đối tượng và hành vi, từ đó nâng cao độ tin cậy của công tác giám sát. Đáng chú ý, hệ thống không chỉ giúp
giảm tải công việc cho người giám sát mà còn cung cấp một giải pháp thông minh nhằm tăng cường an ninh, qua đó nâng cao hiệu quả quản lý tại các khu vực
dễ bị tổn thương. Những phát hiện này nhấn mạnh tiềm năng đầy hứa hẹn của công nghệ trí tuệ nhân tạo (AI) trong lĩnh vực an ninh.

Từ khóa: CNN, Yolov11, OpenCV, ByteTrack, phát hiện đối tượng.

1Faculty of Electrical and Electronics Engineering, Hanoi Open University, Vietnam
2Faculty of Control and Automation, Electricity Power University, Vietnam
*Email: htnghia2@hou.edu.vn
Received: 20/4/2025
Revised: 11/6/2025
Accepted: 28/7/2025

1. INTRODUCTION

With the rapid advancement of technology, security has
become a primary concern not only for public facilities but

also for businesses and households. The rising incidence of
crime, unauthorized intrusions, and other security threats
has created an urgent need for an effective and intelligent

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 61 - Số 7 (7/2025) 92

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

surveillance system. Traditional security camera systems
often rely on human observation, leading to delays in
detection and inconsistencies in incident response.
Addressing these challenges, this study develops an
automated system for detecting and recognizing targets
using security cameras, reducing the workload of
monitoring staff while enhancing the reliability and
accuracy of suspicious behavior detection. This, in turn,
improves overall safety in monitored areas, making the
development of automated surveillance technology both a
pressing necessity and a significant advancement in the
application of artificial intelligence (AI) to security solutions.
In recent years, object detection technology, particularly
deep learning models such as YOLO (You Only Look Once),
has garnered substantial attention from the scientific
community. While the integration of YOLO in security
systems offers numerous advantages, it also presents
several challenges. The following section provides an
overview of existing research, highlighting key strengths
that have been addressed and limitations that require
further investigation.

1.1. Research on the Object Detection Problem

A comprehensive survey on object detection over the
past two decades presents an overview of its history,
methodologies, and key trends. However, a notable
limitation is the lack of indepth analysis of specific
algorithms or specialized applications [1]. Another study
explores object detection methods based on deep
learning, such as Faster R-CNN, SSD, and YOLO,
demonstrating their effectiveness in accurately identifying
various objects. Despite their high performance, these
models require large datasets for training and exhibit long
processing times. The study evaluates performance and
discusses challenges and practical applications [2]. Further
research provides an overview of contemporary
algorithms, focusing on advanced machine learning
techniques, including YOLO. While progress in object
detection is highlighted, the absence of empirical testing
on specific datasets limits applicability to real-world
scenarios [3]. These studies underscore object detection
technologies’ rapid evolution while revealing challenges
related to computational demands, real-time processing,
and dataset dependencies. Addressing these limitations is
crucial for advancing object detection applications,
particularly in security and surveillance contexts.

1.2. Overview of the YOLO Model

YOLO (You Only Look Once) is an object detection
model built on Convolutional Neural Network (CNN)

architecture. In YOLO, CNNs act as the backbone by
extracting spatial features such as edges, shapes, and
textures from input images. These learned features are
passed through prediction layers to simultaneously
generate bounding box coordinates and object class
labels. This unified framework allows YOLO to process the
entire image in a single forward pass, enabling real-time
object detection with high accuracy. A review of YOLO’s
development, from YOLOv1 to YOLOv5, emphasizes
improvements in performance and real-time object
detection capabilities. While its fast processing speed is a
key advantage, the model struggles with detecting small
objects and exhibits decreased accuracy under
inconsistent lighting conditions [4]. A broader analysis of
YOLO architectures, covering versions up to YOLOv8 and
YOLO-NAS, highlights precision, speed enhancements,
and diverse practical applications. However, challenges
persist, particularly in object recognition under complex
conditions such as occlusion or crowded environments
[5]. Further investigation into YOLO’s evolution
underscores its growing role in digital manufacturing and
defect detection, demonstrating its effectiveness in
quality control. Nevertheless, additional research is
needed to optimize the model for industrial applications,
ensuring robust performance across various operational
settings [6]. These findings collectively illustrate YOLO’s
advancements and limitations, providing a foundation
for future improvements in real-world deployment
scenarios.

1.3. Application of YOLO in Security

Integrating face recognition technology with CCTV
systems has proven effective in enhancing security and
expediting verification processes. However, this
approach relies heavily on robust technical infrastructure
and requires stringent data protection measures to
safeguard privacy [7]. Similarly, using YOLOv3 for realtime
weapon detection in intelligent surveillance systems has
demonstrated high accuracy and rapid response
capabilities. Despite these advantages, its performance
may degrade under poor lighting conditions, and
significant computational resources are required for
optimal operation [8].

Advancements in AI-powered security camera
systems leveraging YOLO have introduced architectural
and methodological innovations.

Nonetheless, concerns persist regarding originality,
comprehensive performance evaluation, and practical
considerations such as costeffectiveness and data privacy

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 61 - No. 7 (July 2025) HaUI Journal of Science and Technology 93

[9]. Integrating moving object detection with enhanced
security protocols offers a comprehensive surveillance
solution, reinforcing security measures. However, this
approach also introduces challenges related to system
complexity and computational demands [10].

The combination of YOLO and OpenCV has been
successfully applied to railway security, offering
automatic alert capabilities and demonstrating strong
real-world applicability. Nevertheless, accuracy and
deployment costs remain critical factors that must be
carefully addressed to ensure effective implementation
[11]. Additionally, weapon detection systems integrated
with email alert notifications provide practical utility in
security applications. However, lingering concerns
regarding accuracy, reliability, and data privacy highlight
the need for further refinement and validation [12].

1.4. Summary and Research Contribution
Existing studies emphasize the significant potential of

AI-based technologies in enhancing security while
identifying challenges related to performance,
computational efficiency, and data protection. Although
YOLO has demonstrated remarkable success in object
detection, particularly for security applications, several
challenges persist. These include high computational
costs, accuracy limitations in complex environments, and
ethical privacy concerns. Addressing these challenges
presents opportunities for future research, particularly in
optimizing processing efficiency and ensuring robust
privacy protection in real-world deployments.

This study introduces an automated target detection
and recognition system that integrates real-time
notification capabilities to assist security personnel in
monitoring. The system uses the YOLOv11 model and the
OpenCV library and Python to enhance surveillance at
entry and exit points in enterprises and pub-lic institutions.
It will automatically detect individuals and vehicles, issuing
real-time alerts through sound notifications or Telegram
messages upon detecting a target. By improving the
efficiency and responsiveness of security monitoring, this
research aims to advance AIdriven surveillance
technologies and contribute to more effective and
intelligent security management solutions.

1.5. Regarding originality and scientific contribution
The main contents of this paper have not been

previously published in any academic journals. Although
numerous studies have focused on object detection
using YOLO models, most have employed versions
ranging from YOLOv1 to YOLOv8 and primarily evaluated

detection performance, without integrating real-time
alert systems or testing on hardware lacking GPU
support. This study utilizes YOLOv11n a newer and
lightweight version within a comprehensive surveillance
system that includes detection, tracking, and instant
notification capabilities. This represents a significant
difference and constitutes a novel scientific contribution,
as the system is deployed on resource-constrained
hardware while still achieving high performance and
offering automated alerts for human supervisors.
Furthermore, the integration of the ByteTrack library for
object tracking and the implementation of real-time
Telegram notifications have not been previously
reported in studies involving YOLOv11. These
enhancements greatly improve practical applicability
and support the development of smarter, more proactive,
and cost-effective surveillance systems.

2. METHODOLOGY

In machine learning and computer vision research,
selecting the appropriate tools is crucial for achieving
high efficiency and accuracy. This study utilized a
DESKTOP-CV5CH0B computer with a 64-bit operating
system, 16GB of RAM, and an Intel Core i7-1355U (13th
Gen) processor running at 1.70GHz, meeting the basic
requirements for conducting experiments and analyzing
data in machine learning. Additionally, sharp image
capture was ensured by a high-quality camera,
supporting object recognition applications, while a
stable network infrastructure enabled fast and efficient
data transmission.

Python was widely used on the software side due to
its robust capabilities with various libraries such as YOLO
(You Only Look Once) and OpenCV (Open Source
Computer Vision Library). Furthermore, using well-
established datasets like COCO was a foundation for
training and testing models.

However, the current system configuration still has
some limitations. The absence of a powerful GPU, a CPU
speed of 1.70GHz, and potential bottlenecks in SSD
read/write speeds could pose challenges for
computational tasks and data processing workloads.
Therefore, to ensure rapid operation and efficient
execution, an optimal system configuration should
include an NVIDIA GPU, 16GB of RAM, and largercapacity
SSD storage. This setup would facilitate the successful
development and deployment of machine learning and
computer vision applications, paving the way for future
research endeavors.

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 61 - Số 7 (7/2025) 94

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

In this study, we selected Python as the primary
programming language because of its flexibility and the
robust ecosystem of libraries available for computer
vision applications. The system utilizes several key
libraries to ensure both high performance and reliability.
We employ YOLOv11 the latest version in the Ultralytics
YOLO series for fast and accurate object detection.
YOLOv11 features significant architectural improvements
and enhanced training methodologies compared to its
predecessors, resulting in superior accuracy, speed, and
efficiency in real-time object detection tasks. As shown in
Figure 1, its performance makes it a versatile solution for
various computer vision applications.

Figure 1. Performance Evaluation of YOLO Versions [13]

In addition to YOLOv11, the OpenCV library is
essential for handling various image and video
processing tasks, such as reading image files, processing
video streams, and capturing webcam feeds. To track
detected objects across video frames, we utilize the
ByTrack library. This library assigns and maintains unique
IDs for each object, crucial for consistent identification in
surveillance and security applications. The system is
trained and evaluated using the Common Objects in
Context (COCO) dataset, a widely recognized benchmark
in the object detection community that offers a
comprehensive collection of annotated images.
Furthermore, we have implemented Telegram
integration to provide real-time notifications of detected
objects, significantly enhancing the system’s
effectiveness in active security monitoring.

System Design Overview

As illustrated in Figure 2, the security alarm system
comprises multiple interconnected modules, each
fulfilling a specific role to ensure accurate motion
detection, prompt response, and real-time user
notifications. The operation begins with the motion
detector, which includes a sensing element responsible

for detecting changes in the surrounding environment.
This signal is first processed through a signal conditioning
circuit to filter and amplify the data before being passed
to the output interface. Once the signal reaches the main
microcontroller, it enters through the input interface and
is handled by the processing unit. The microcontroller
analyzes the incoming data to determine whether a valid
motion event has occurred. If an event is confirmed, it
simultaneously triggers the alarm system and activates
the communication unit. The communication unit then
interfaces with a GPRS module comprising a UART
interface, GSM/GPRS transceiver, and antenna module to
transmit real-time alerts to the user’s mobile device via
wireless cellular networks. Meanwhile, the alarm module
receives instructions from the microcontroller to initiate
an acoustic warning. It processes the signal through its
internal signal processing circuit and activates the sound
generator, producing an audible alert to notify nearby
individuals of the detected intrusion. The system is
integrated with a surveillance camera to enhance
monitoring capabilities further. When motion is detected,
the camera captures real-time images or video footage of
the monitored area. These visual records complement
the motion detection alerts and are critical for verifying
incidents, supporting post-event analysis, and improving
situational awareness. This integrated design enables
users to remotely monitor and evaluate potential security
threats in real-time, providing auditory and visual
feedback. The combination of sensor technology,
wireless communication, and multimedia surveillance
significantly enhances the effectiveness and
responsiveness of the security system.

Figure 2. System Design Diagram

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 61 - No. 7 (July 2025) HaUI Journal of Science and Technology 95

Algorithm and Object Detection Process

The object detection mechanism in the proposed
system is structured as a multi-stage pipeline, ensuring
real-time performance and high accuracy. Figure 3
provides an overview of the system workflow,
highlighting the sequential processes involved in
capturing and analyzing visual data.

The process begins with the acquisition of video
frames from the surveillance camera. These frames are
displayed on-screen in realtime, forming the input for
subsequent object detection tasks. Each captured frame
is analyzed using the YOLOv11 deep learning model,
which performs object detection and classification. The
model identifies objects of interest, assigns bounding
boxes, and determines the centroid of each object to
facilitate precise tracking across multiple frames.

The system is designed to filter and prioritize specific
types of objects, such as humans or vehicles, based on the
application’s requirements. When an object of interest is
detected, the corresponding frame is stored in a
predefined directory for documentation purposes.
Simultaneously, a notification containing the captured
image is automatically sent to the assigned security
personnel through the Telegram platform, enabling real-
time alerts and rapid response.

Figure 3. Overview of System Workflow

A more detailed breakdown of the detection
algorithm is provided in the flowchart in Figure 4, which
illustrates the complete operational stages of the system:

• System Initialization: The YOLOv11 model is
loaded into memory, and the camera feed is activated.

• Frame Acquisition and Processing: The system
enters a continuous loop where frames are captured and
fed to the detection model.

• Object Detection and Tracking: The YOLOv11
model identifies objects within each frame. Unique
tracking IDs are assigned for continuity across frames if
any objects are detected.

• Alert Processing: If a detected object matches the
system’s criteria for a security concern (e.g., an
unauthorized person or vehicle), the system captures the
frame, saves the image, and generates an alert.

• Notification System: The alert and the relevant
image are transmitted via Telegram, ensuring immediate
access by the security team.

• Continuous Monitoring: The system op-erates
continuously, maintaining object detection and updating
object IDs in real-time as new entities appear in the
camera’s field of view.

Figure 4. Detailed Flowchart of the Detection Process

This modular and automated pipeline enables
efficient real-time surveillance, enhancing situational
awareness and responsiveness in security-critical
environments.

Implementation

The implementation involves setting up the
development environment and deploying the
application. The required dependencies include OpenCV,
Ultralytics YOLO, and the Telegram Bot API, which can be
installed using:

pip install opencv-python paralytics python-telegram-
bot

The system is structured as follows:

(1) YOLOv11 Model Initialization: The model is
loaded from a pre-trained weights file (yolo11n.pt) to
detect specific object classes.

(2) User Interface: A simple interface is developed
using Tkinter, allowing users to control the detection
process.

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 61 - Số 7 (7/2025) 96

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

(3) Object Tracking: Unique IDs are assigned to
detected objects to enable seamless tracking.

(4) Video Processing: OpenCV processes video
frames, applies transformations, and overlays bounding
boxes for visualization.

(5) Notification System: When a target object is
detected, an image and alert message are sent via
Telegram.

The system ensures high accuracy in object detection
and provides real-time security alerts. The results of the
detection process are illustrated below:

In Figure 5, the model detected people and vehicles
successfully and sent a Telegram message notification.

Figure 5. Results of Object Detection

Figure 6. Telegram Notification for Detected Objects

Figure 6 shows Telegram messages being sent upon
the detection of people and vehicles. These messages
include an image of the detected object and a brief
notification: "Hello! Detected people" when people
are detected, and "Attention! Detected vehicles" when
vehicles are detected, along with an ID and timestamp.

3. RESULTS AND DISCUSSION

3.1. Results

Based on the source code, the program uses
YOLOv11n (a lightweight version of YOLOv11) to detect
and track objects (people and vehicles) from a webcam. I
will provide hypothetical data based on the logic of the
code and the performance of YOLOv11n. Assumed Data:

Runtime: 16s, Actual Number of
Objects: People: 100, Vehicles: 50.

The figures in Table 1 summarize
and present the main results of the
experiment using YOLOv11n without
a GPU under favorable conditions. This
table provides an overview of key
metrics such as detection rate and
confidence, allowing for a visual
comparison between people and
vehicles. Simultaneously, it serves as a
reference for detailed analysis in the
points below, supporting assertions
about the model’s performance on
non-GPU devices. This study presents
object detection and tracking results
using YOLOv11n, a lightweight

version of YOLOv11, on a DESKTOP-CV5CH0B computer
with an Intel Core i7-1355U 1.70GHz CPU and 16GB RAM
without GPU support. During a 16-second test with
hypothetical data consisting of 100 people and 50
vehicles, the model achieved fairly impressive
performance, detecting 90% of people and 80% of
vehicles. Notably, the system accurately assigned Track
IDs to all detected objects (90 people and 40 vehicles),
with no duplicate counting (0% overcounting) for either
object type. Regarding confidence, the YOLOv11n results
reflect the model’s certainty in detecting objects. The
average confidence is low (0.52 for people, 0.63 for
vehicles) due to diverse viewpoints, lighting conditions,
occlusion, and potential limitations in computing
resources from not using a GPU, preventing the
application of complex optimization techniques. Vehicles
have higher confidence due to their more consistent
shapes compared to humans. The highest confidence (0.9

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 61 - No. 7 (July 2025) HaUI Journal of Science and Technology 97

- 0.92) occurs when objects are clearly and obvious under
ideal conditions. The lowest confidence (0.1) is the
established minimum threshold, below which detections
are discarded. The large gap between the highest and
lowest values indicates that detection performance
fluctuates significantly depending on the object’s
appearance conditions. Although the processing speed is
only 2.89 FPS, which is relatively low, it is considered
acceptable for real-time tracking applications without a
GPU, and the storage requirements are quite modest (8 -
12MB for the model and under 1MB for tracking data).
These results demonstrate that YOLOv11n is an effective
and lightweight solution for object detection and
tracking systems on resource-constrained devices,
striking a balance between detection performance,
accuracy, and resource requirements.

Table 1. Object Detection and Tracking Summary (Under favorable
conditions)

Metric People Vehicles

Actual Count 100 50

Detected 90 40

Track IDs 90 40

Detection Rate 90% 80%

Overcount Rate 0% 0%

Avg Confidence 0.52 0.63

Highest 0.9 0.92

Lowest 0.1 0.1

The figures in Table 2 summarize and present the
main results of the experiment using YOLOv11n without
a GPU under challenging conditions (low light, blurry
images, and occluded objects). In the 16-second test
using hypothetical data consisting of 100 people and 50
vehicles, the model detected 75% of the people and 64%
of the vehicles. Despite the highly complex environment
and degraded image quality, YOLOv11n maintained
stable tracking performance by accurately assigning
Track IDs to all detected objects (75 people and 32
vehicles). However, some overcounting occurred due to
environmental conditions 5% for people and 3% for
vehicles indicating possible misidentifications when
object features were difficult to distinguish. The average
confidence dropped to 0.4 for people and 0.5 for vehicles,
reflecting the model’s uncertainty under poor visual
conditions. Vehicles still achieved slightly higher
confidence scores due to their more stable and
recognizable shapes. The highest confidence values (0.8

for people, 0.82 for vehicles) were observed when objects
remained relatively visible even in low-light conditions.
Meanwhile, the lowest confidence remained at the
minimum threshold of 0.1 detections below this level
were discarded. The large gap between the highest and
lowest values suggests that detection performance was
significantly affected by the visual appearance conditions
of the objects.Additionally, the processing speed
decreased to 2.5 FPS due to increased scene complexity
and limited computational resources without GPU
support.

Table 2. Object Detection and Tracking Summary (Under challenging
conditions)

Metric People Vehicles

Actual Count 100 50

Detected 75 32

Track IDs 75 32

Detection Rate 75% 64%

Overcount Rate 5% 3%

Avg Confidence 0.4 0.5

Highest 0.8 0.82

Lowest 0.1 0.1

3.2. Discussion

This study highlights the practical performance of
YOLOv11n in object detection and tracking under both
favorable and challenging conditions on a CPU-only
system. The results align with the speed-accuracy trade-
offs commonly discussed in YOLO-related research, while
also demonstrating the model’s potential for deployment
in real-time, resource-constrained security monitoring
environments.

Under favorable conditions, the system achieved high
detection rates 90% for people and 80% for vehicles
with no overcounting and consistent assignment of Track
IDs, supported by average confidence scores of 0.52
(people) and 0.63 (vehicles). In challenging conditions
(low light, blur, and occlusion), detection performance
dropped to 75% for people and 64% for vehicles, with
a modest overcount rate (5% for people, 3% for
vehicles) and lower average confidence values (0.4 and
0.5, respectively). Despite the drop in accuracy,
YOLOv11n maintained its ability to assign unique Track
IDs reliably. However, the processing speed declined
from 2.89 FPS (favorable) to 2.5 FPS (challenging),
indicating a performance cost under harsher visual
environments.

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 61 - Số 7 (7/2025) 98

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

Compared to previous works using YOLOv3 - YOLOv8,
this research leverages YOLOv11n, the most recent and
lightweight version, which shows significant
improvements in model efficiency while maintaining
acceptable accuracy. The integration of ByteTrack
enables object tracking, extending the system’s
capability beyond basic detection and aligning more
closely with real-world surveillance needs.

Contributions:

(1) Latest Version Evaluation: The study provides a
practical evaluation of YOLOv11n in security monitoring,
with good detection rates under optimal
conditions,while still maintaining relatively stable
detection rates under challenging conditions such as low
light, blurry images, and occluded objects.

(2) Notification System: The system integrates
notifications when detection counts exceed thresholds,
transforming the monitoring tool into an active security
measure with adjustable sensitivity.

(3) Quantitative Metrics: Establishes comprehensive
performance metrics for security monitoring
applications, including detection rates, confidence
distributions, and overcount analysis.

Future Research:

(1) Confidence Filtering: Apply ≥ 0.7 threshold to
reduce false positives (e.g., 0.65 confidence).

(2) Tracker Improvement: Fix ByteTrack overcounting
with ID lifecycle tracking.

(3) Real Data Validation: Test on real datasets (e.g.,
COCO) instead of simulations.

(4) Small Object Detection: Use larger models (e.g.,
YOLOv11n) or higher resolution for small objects.

(5) Efficiency Optimization: Optimize video size (e.g.,
H.264) and Use powerful GPUs to replace CPUs.

A custom dataset can be created and filtered to
enhance object detection beyond the COCO dataset:
download the coco128.yaml file from the YOLOv11
GitHub repository and the coco128.zip. Extract
coco128.zip to access the images folder (640-pixel
images) and labels folder (object coordinates). Use
https://makesense.ai/ to label and generate coordinates
for target objects (e.g., people and vehicles) in the images
folder, then download the updated label file. In Google
Colab, set up the environment, upload coco128.yaml and
the modified coco128.zip, and extract the latter. Edit
coco128.yaml to specify target objects (people and

vehicles), then train YOLOv11n. Initial training may yield
low accuracy, requiring repeated runs using the last.pt file
until satisfactory results are achieved. The best.pt file,
offering the highest accuracy, is downloaded and applied
to the project for optimal predictions.

Below are the specifications of two versions of
YOLOv11n: one trained from scratch and another fine-
tuned on a self-trained dataset.

 a b c

 d e f

 g h i

 j

Figure 7. Trained from scratch and a self-trained dataset

In Figure 7 and Figure 8, we conducted training and
evaluation of object detection performance over 50

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 61 - No. 7 (July 2025) HaUI Journal of Science and Technology 99

epochs, with loss and performance metrics recorded on
both the training and validation sets. For Figure 7, the
loss metrics on the training set showed significant
improvement: train/box_loss (bounding box loss on the
training set) in Figure 7(a) decreased from 1.4 to 0.8,
showing enhanced ability to accurately locate objects;
train/cls_loss (classification loss on the training set) in
Figure 7(b) dropped sharply from 3.5 to 1.5, reflecting
major progress in correctly classifying objects and
train/dfl_loss (Distribution Focal Loss on the training set,
a loss type for improving box prediction) in Figure 7(c)
reduced from 1.3 to 1.0 after 50 epochs, improving the
detailed accuracy of bounding boxes. On the validation
set, val/box_loss (bounding box loss on the validation
set) in Figure 7(f) decreased from 1.2 to 0.8, val/cls_loss
(classification loss on the validation set) in Figure 7(g)
from 3.5 to 2.0, and val/dfl_loss (Distribution Focal Loss
on the validation set) in Figure 7(h) from 1.2 to 0.95,
indicating good learning but slight overfitting due to
the gap between train/cls_loss (1.5) and val/cls_loss
(2.0). Regarding performance, Figure 7 recorded a
precision of metrics/precision(B) (precision of bounding
boxes) in Figure 7(d) at 0.8, a recall of metrics/recall(B)
(recall of bounding boxes) in Figure 7(e) at 0.8, with
significant fluctuation in the recall metric ranging from
0.7 to 0.9 across epochs. The metrics/mAP50(B) (mean
Average Precision at IoU 0.5 for bounding boxes) in
Figure 7(i) reached 0.7, while metrics/mAP5095(B)
(mean Average Precision from IoU 0.5 to 0.95 for
bounding boxes) in Figure 7(j) only reached 0.55,
indicating limited overall performance at higher IoU
thresholds.

In contrast, Figure 8 demonstrates superior
performance across all evaluated metrics. On the training
set, the bounding box loss (train/box_loss), which
measures the accuracy of predicted object locations,
decreased from 0.9 to 0.65, as shown in Figure 8(a). The
classification loss (train/cls_loss), indicating the model’s
ability to classify objects correctly, decreased from 1.5 to
0.9 in Figure 8(b), while the Distribution Focal Loss
(train/dfl_loss), which enhances bounding box precision,
dropped from 1.1 to 0.9 in Figure 8(c). These reductions
reflect improved learning efficiency compared to Figure 7.

On the validation set, the bounding box loss
(val/box_loss) decreased from 0.75 to 0.55 in Figure 8(f),
the classification loss (val/cls_loss) from 1.6 to 0.6 in
Figure 8(g), and the Distribution Focal Loss (val/dfl_loss)
from 0.96 to 0.88 in Figure 8(h). Notably, the small gap

between training and validation losses (e.g., train/cls_loss
at 0.9 vs. val/cls_loss at 0.6) indicates reduced overfitting
and better generalization.

In terms of performance, Figure 8 achieved a precision
of 0.94 for bounding boxes (metrics/ precision(B)) as
shown in Figure 8(d), and a recall of 0.90(metrics/recall(B))
in Figure 8(e), both exhibiting stable upward trends with
minimal fluctuation after 20 epochs. Furthermore, the
mean Average Precision at an IoU threshold of 0.5
(metrics/mAP50(B)) reached 0.96 in Figure 8(i). In
contrast, the mean Average Precision across IoU
thresholds from 0.5 to 0.95 (metrics/mAP50-95(B))
reached 0.86 in Figure 8(j), both significantly
outperforming the corresponding values in Figure 7. The
training curves (blue lines) and smoothed curves (yellow
dotted lines) in Figure 8 also show a consistent
improvement with reduced fluctuations after 20 epochs,
unlike the more erratic behavior observed in Figure 7,
especially in metrics such as recall and mAP.

 a b c

 d e f

 g h i

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 61 - Số 7 (7/2025) 100

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

 j

Figure 8. The version that was fine-tuned on a self-trained dataset

Overall, Figure 8 outperforms Figure 7 across nearly all
dimensions. In terms of loss, Figure 8 shows markedly
lower values on both the training and validation sets (e.g.,
val/box_loss of 0.55 vs. 0.8, val/cls_loss of 0.6 vs. 2.0),
indicating enhanced learning, generalization, and
reduced overfitting due to the smaller gap between the
two datasets. Regarding performance metrics, Figure 8
achieved higher scores: precision at 0.94 vs. 0.8, recall at
0.90 vs. 0.8, mAP50 at 0.96 vs. 0.7, and mAP50-95 at 0.86
vs. 0.55, indicating more accurate and robust object
detection, particularly at higher IoU thresholds.
Additionally, Figure 8 exhibited greater training stability,
with key performance metrics (precision, recall, mAP)
displaying reduced variance after 20 epochs, whereas
Figure 7 exhibited notable fluctuations, especially in
recall (ranging from 0.7 to 0.9). These results suggest that
Figure 8 not only delivers superior performance but also
offers greater robustness and reliability, making it the
preferred model for the object detection task in this
study.

4. CONCLUSION

This research successfully developed an automated
monitoring system integrating YOLOv11, OpenCV, and
ByteTrack for realtime target detection, recognition, and
notification in security camera applications. The system
achieved a fairly high detection rate on constrained
hardware, leveraging YOLOv11’s advanced capabilities.
Real-time Telegram notifications transformed passive
monitoring into a proactive security solution. The
YOLOv11n model, fine-tuned on a custom dataset,
outperformed its scratch-trained counterpart, reducing
overfitting and enhancing training stability. By
automating detection and alerting, the system
overcomes traditional limitations such as human error
and delayed responses. The study contributes to the
academic literature by evaluating YOLOv11n in real-
world security contexts, integrating ByteTrack for object

tracking, and establishing comprehensive performance
metrics. However, challenges include low processing
speed due to the absence of GPU support, inconsistent
reliability in complex conditions, and the need for
validation on real-world datasets. Future development
should focus on GPU optimization, improving small
object detection, applying stricter confidence thresholds
to reduce false positives, testing on diverse datasets, and
addressing privacy concerns. This research highlights the
transformative potential of AI-driven surveillance
technology in creating smarter, more efficient, and
reliable security solutions.

REFERENCES

[1]. Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, “Object detection in 20 years: A
survey,” in Proceedings of the IEEE, 111, 3, 257-276, 2023. doi:
10.1109/JPROC.2023.3238524.

[2]. Q. Zhao, P. Zheng, S.-T. Xu, X. Wu, “Object detection with deep
learning: A review,” IEEE Transactions on Neural Networks and Learning
Systems, 30, 11, 3212-3232, 2019. doi: 10.1109/TNNLS.2018.2876865.

[3]. Y. Amit, P. Felzenszwalb, R. Girshick, “Object detection,” in Computer
Vision, K. Ikeuchi, Ed. Cham: Springer, 660-670, 2021. doi: 10.1007/978-3-
030-63416-2_660.

[4]. P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, “A review of YOLO algorithm
developments,” Procedia Computer Science, 199, 1066-1073, 2022. doi:
10.1016/j.procs.2022.01.135.

[5]. J. Terven, D. M. Córdova-Esparza, J. A. Romero-González, “A
comprehensive review of YOLO architecture in computer vision: From YOLOv1
to YOLOv8 and YOLO-NAS,” Machines, Learning, and Knowledge Engineering, 5,
4, 1680-1716, 2023. doi: 10.3390/make5040083.

[6]. M. Hussain, “YOLO-v1 to YOLO-v8, the rise of YOLO and its
complementary nature toward digital manufacturing and industrial defect
detection,” Machines, 11, 7, 677, 2023. doi: 10.3390/machines11070677.

[7]. H. J. Mun, M. H. Lee, “Design for visitor authentication based on face
recognition technology using CCTV,” IEEE Access, 10, 124604-124618, 2022.
doi: 10.1109/ACCESS.2022.3223374.

[8]. S. Narejo, B. Pandey, D. E. Vargas, C. Rodriguez, M. R. Anjum,
“Weapon detection using YOLO v3 for smart surveillance system,”
Mathematical Problems in Engineering, 1, 9975700, 2021. doi:
10.1155/2021/9975700.

[9]. P. Vijayakumar, G. Praveen Santhoshkumar, M. Pyingkodi, C.
Shwetha, S. Sibitha, K. Vedha Shruthi, “Deep learning based smart security
camera system using YOLO algorithm in security setting,” in 2024 2nd
International Conference on Self Sustainable Artificial Intelligence Systems
(ICSSAS), Erode, India, 703-709, 2024. doi:
10.1109/ICSSAS64001.2024.10761043.

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 61 - No. 7 (July 2025) HaUI Journal of Science and Technology 101

[10]. S. Al-E’mari, Y. Sanjalawe, H. Alqudah, “Integrating enhanced
security protocols with moving object detection: A YOLO-based approach for
real-time surveillance,” in 2024 2nd International Conference on Cyber
Resilience (ICCR), Dubai, United Arab Emirates, 1-6, 2024. doi:
10.1109/ICCR61006.2024.10532863.

[11]. S. Jyothis, A. S. Nair, K. VR, R. M., D. Visakh, “Developing a SmartRail
security system with YOLO and OpenCV,” Journal of Ubiquitous Computing and
Communication Technologies, 6, 1, 28-38, 2024.

[12]. S. M. Keerthana, R. Sujitha, P. Yazhini, “Weapon detection for
security using the YOLO algorithm with email alert notification,” in 2024
International Conference on Innovations and Challenges in Emerging
Technologies (ICICET), Nagpur, India, 1-6, 2024. doi:
10.1109/ICICET59348.2024.10616365.

[13]. Ultralytics, YOLOv11: Model overview. 2025. [Online]. Available:
https://docs.ultralytics.com/vi/models/yolo11/. [Accessed: 26 Mar. 2025].

[14]. Ultralytics, Tracking: YOLOv11 model overview, 2025. [Online].
Available: https://docs.ultralytics.com/vi/modes/track/. [Accessed: 26 Mar.
2025].

[15]. Ultralytics, Dataset: Common objects in context, 2025. [Online].
Available: https://docs.ultralytics.com/datasets/detect/coco/. [Accessed: 26
Mar. 2025].

THÔNG TIN TÁC GIẢ

Trần Thị Thùy Linh1, Hoàng Trọng Nghĩa1, Nguyễn Thị Ngọc1,
Trần Thị Mỹ Kim1, Nguyễn Văn Sơn1,
Nguyễn Hoài Giang1, Vũ Duy Thuận2
1Khoa Điện - Điện tử, Trường Đại học Mở Hà Nội
2Khoa Điều khiển và Tự động hoá, Trường Đại học Điện lực

