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ABSTRACT 

This paper presents an optimization method for fuzzy logic controllers 
(FLC) utilizing the quantum-behaved particle swarm optimization (QPSO) 
algorithm. The proposed controller is implemented for balance control of a 
rotary inverted pendulum, where the parameters of the triangular 
membership function are fine-tuned to achieve optimal error and transient 
response time for the system’s state variables. By integrating quantum 
mechanics principles with the particle swarm optimization (PSO) framework, 
QPSO demonstrates robust capabilities in identifying global and local optima 
for complex nonlinear and non-differentiable problems. To evaluate the 
algorithm's optimization performance, simulations were conducted using 
Matlab software, and the algorithm was implemented on an experimental 
model. Traditional PSO was also included for comparison. Simulation and 
experimental results show that QPSO achieves faster convergence and 
superior search outcomes under identical conditions (both with and without 
noise), along with improved quality indices compared to PSO. 
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1. INTRODUCTION 

The inverted pendulum system holds significant 
importance in nonlinear mechanics. It represents 
numerous industrial challenges and applications, such as 
external disturbances or nonlinear behaviors under 

varying conditions [1]. Consequently, it has secured a 
prominent position as a foundational experimental 
platform for validating and testing novel ideas in control 
theory. The inverted pendulum model is highly suitable 
for simulating state control of space rockets and satellites, 
automatic aircraft landing systems, aircraft stabilization in 
turbulent airflow, cabin stabilization on ships, and more. 
Additionally, this model serves as an initial step toward 
robot stabilization [2]. The inverted pendulum is one of 
the most extensively studied problems in control 
engineering and remains among the most complex 
dynamic systems [4]. 

The rotary inverted pendulum is an open-loop 
unstable and highly nonlinear system, making its control 
a challenging task. Stabilizing the pendulum rod in an 
upright position with oscillations in its position is 
considered a benchmark control problem. This has been 
addressed by attaching the pendulum to a base that 
either moves linearly (classical inverted pendulum 
system) or rotates horizontally on a plane (rotary inverted 
pendulum system) [3]. Simulating, predicting, or 
controlling an inverted pendulum system requires an 
accurate mathematical model of its highly complex 
dynamics, typically described by differential equations 
[2]. Furthermore, applying control techniques to such a 
complex nonlinear system poses challenges in selecting 
control parameters and ensuring performance efficiency. 
Achieving optimal performance involves enhancing 
operational capability, energy efficiency, and stability. For 
instance, H. El Aiss and R. Orellana [5] modeled the cart-
inverted pendulum system and utilized Linear Matrix 
Inequalities (LMI) to design a fuzzy controller. Their 
results showed system stabilization within a short period, 
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with responses maintaining amplitude and speed limits. 
Similarly, Rani et al. [6] employed an ID controller 
optimized with a Genetic Algorithm (GA), resulting in 
significantly improved PID performance, faster 
stabilization, and optimized response. For controlling the 
rotary inverted pendulum, various methods can be 
applied, including linear control methods, system 
linearization, using gain scheduling, fuzzy logic control 
(FLC), swing-up control, switching control, balance 
control and trajectory tracking control. 

Among various control methods, FLC has emerged as 
an effective solution due to its ability to emulate human 
decision-making processes and handle imprecise inputs 
without requiring an exact mathematical model of the 
system [7]. FLC utilizes a set of linguistic rules to define 
the relationship between system states and control 
actions, making it particularly suitable for controlling 
nonlinear systems like the inverted pendulum [8]. This 
approach not only enhances system stability but also 
provides resilience against parameter variations and 
external disturbances, which are common in real-world 
scenarios [9]. To further improve the performance of 
fuzzy control, optimization algorithms such as neural 
networks [10], genetic algorithms (GA) [11], and PSO [12] 
have been applied. Researchers have optimized fuzzy 
logic controllers using PSO by fine-tuning fuzzy 
parameters like membership function boundaries and 
rule weights, combined with the Lyapunov method to 
ensure global stability for nonlinear systems. Results have 
shown faster stabilization, reduced oscillations, and 
improved performance under noisy conditions and 
environmental parameter variations compared to 
traditional controllers. A variation of PSO, known as QPSO 
[13], has also been employed. By updating particles based 
on quantum behavior [14] rather than traditional position 
and velocity updates influenced by individual and 
collective experiences, QPSO exhibits superior global 
convergence [15] and avoids local optima issues [16]. 
QPSO has been used to optimize various controllers, such 
as LQR [17], PID [18], and multi-segment models of 
nonlinear systems [19], achieving promising results in 
precise control and system stability under disturbances. 
For instance, Reddipogu [20] utilized QPSO to enhance 
global search capability, optimizing the Q and R weights 
in the LQR cost function. This approach improved system 
disturbance rejection, ensured rapid and accurate 
responses under changing load or resistance conditions, 
and significantly reduced oscillations compared to LQR 
tuned with conventional PSO. 

To further enhance the performance of FLC, the 
integration with the QPSO algorithm has been 
introduced. Leveraging the unique strengths of both 
approaches-the nonlinear signal processing capability of 
FLC and the parameter optimization power of QPSO-this 
combination promises to be an effective solution for 
controlling nonlinear systems. This paper presents a 
QPSO-enhanced FLC algorithm design, where the control 
strategy adapts and self-tunes to ensure stability in the 
rotary inverted pendulum system. 

2. ROTARY INVERTED PENDULUM SYSTEM 

A typical model of a rotary inverted pendulum can be 
seen in Fig. 1. The system parameters are represented as 
follows: the angular position of the arm (θ1), the angular 
position of the pendulum rod θ2), the motor control 
signal (vi), the arm length (L1), the pendulum rod length 
(L2), the arm mass (m1), the pendulum rod mass (m2), the 
center of mass of the arm (l1), the center of mass of the 
pendulum rod (l2), the moment of inertia of the arm (J1), 
the moment of inertia of the pendulum rod (J2), the 
damping coefficient of the arm (b1), and the damping 
coefficient of the pendulum rod (b2). 

 
Fig. 1. Rotaty inverted pendulum 

According to the Lagrange equation, the dynamics of 
the Rotary Inverted Pendulum (RIP) system can be 
expressed as follows: 
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In practice, the input to the motor is voltage. 
Therefore, we need an equation to represent the 
relationship between the input voltage and the control 
force calculated from equation (1). This relationship is 
expressed in the following equation (2): 

τ = k�v� + k�θ�̇ (2) 
By substituting equation (2) into equation (1), the 

motion equations of the system can be expressed as 
follows: 

�A + Bsin�(θ�)�θ�̈ + Ccos(θ�)θ�̈ + Fθ�̇ 

+Bθ�̇θ�̇ sin sin (2θ�) − Cθ�̇ sin sin (θ�)  = Iv� 
(3) 

Ccos(θ�)θ�̈ + Bθ�̈ −
B

2
θ�̇ sin sin(2θ�) 

+Eθ�̇ + Dsin(θ�) = 0 
(4) 

Với A = J�
� , B = J�

� , C = m�L�l�, D = gm�l�, E = b�, 
F = b� − K_2, I = K� 

The state-space equations of the system can be 
derived from equation (3) as follows: 
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3. FUZZY CONTROL SYSTEM OF INVERTED PENDULUM 
The FLC is a control system based on Fuzzy Set Theory, 

developed by Zadeh in 1965. Instead of relying on precise 
mathematical models, the FLC operates using linguistic 
control rules, closely mimicking human decision-making 
processes in uncertain and nonlinear environments. 

 
Fig. 2. Block diagram of the controller 
Fuzzy systems have been applied across various fields, 

including control, signal processing, communications, 
medicine, expert systems, and business, among others. 
However, most significant applications are concentrated 

in control-related problems. As illustrated in Fig. 2, fuzzy 
systems can be utilized as either open-loop or closed-
loop controllers. As shown in Fig. 3, when a fuzzy system 
is used as an open-loop controller, the system typically 
establishes control parameters, and the system then 
operates according to these parameters. Conversely, 
when it is employed as a closed-loop controller, as 
depicted in Fig. 4, the fuzzy system continuously takes the 
output of the controlled system and applies control 
actions to the system being controlled. 

FLC is designed to control systems that are difficult to 
model accurately or highly nonlinear systems, where 
traditional control methods Z(such as PID) prove to be 
ineffective. In the inverted pendulum system, the fuzzy 
controller uses the state variables of angle and angular 
acceleration to control the nonlinear system states.  

To control the system, with the state vector (θ/θ ̇)=(x1  
x2), we choose two state variables: -40 ≤ x1 ≤ 40 and -8 ≤ 
x2 ≤ 8 (Degree/Second). First, we construct the 
membership functions for x1 with the following values: 
very large positive (PVB), large positive (PB), positive (P), 
zero (ZO), negative (N), large negative (NB), and very large 
negative (NVB): 

 
a) 

 
b) 

 
c) 

Fig. 3. a) Input membership function x1, b) Input membership function 
x2, c) Output membership function u 
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Next, we define the fuzzification method using the 
Singleton Fuzzification method, where the crisp inputs 
are mapped to fuzzy sets based on the membership 
functions. The inference system is based on the Mamdani 
method, which involves applying fuzzy rules to the 
fuzzified inputs and generating fuzzy outputs. Finally, the 
defuzzification method used is the Center Average, 
where the fuzzy outputs are converted into crisp control 
signals by calculating the weighted average of the output 
membership functions. This approach ensures that the 
fuzzy controller can effectively process the nonlinear 
system's states and produce appropriate control actions 
for the system: 

In the Product Inference Engine (PIE), we use the 
algebraic product for all t-norm operators and the 
maximum operation for all s-norm operators. Therefore, 
the product inference engine can be represented as 
follows: 

μ��(y) =  M max l

= 1  �sup x ϵ U �μ��(x) � μ��
�(x�)μ��(y)

�

���

�� 
(6) 

This means that, with a fuzzy set A' in U, the product 
inference engine will generate a fuzzy set B' in V 
according to the expression above: 

Table 1. Fuzzy control system of inverted pendulum (FLC) 

x1 x2 

PB P Z N NB 

PVB PVVB PVVB PVB PB P 

PB PVVB PVB PB P Z 

P PVB PB P Z N 

Z PB P Z N NB 

N P Z N NB NVB 

NB Z N NB NVB NVVB 

NVB N NB NVB NVVB NVVB 

We use Mamdani's minimum implication method and 
the min operator for all t-norm operators, along with the 
max operator for all s-norm operators. Therefore, MMIE is 
represented as follows: 

μ��(y) = M max l

= 1 �
sup x ϵ U �(min (μ

A′(x� ,

μ
A1

l (x1), . . . , μ
An

l (xn), μ
Bl(y))

� 
(7) 

4. QPSO ALGORITHM 

When optimizing using PSO, particles in the search 
space are adjusted based on their velocity and position 

trajectories, influenced by both their personal experience 
and the global experience of the swarm [20]. However, 
PSO has some limitations, such as being prone to getting 
stuck in local minima and losing its ability to explore 
effectively in later stages of the optimization process [21]. 

To address this, the QPSO algorithm was introduced, 
combining quantum mechanics to enhance global 
convergence capabilities [22]. Instead of using velocity, 
QPSO relies on probability distribution functions to adjust 
the particle positions, creating a broader distribution in 
the search space and increasing the ability to explore 
unknown regions [15]. 

QPSO is an optimization algorithm developed based 
on the quantum mechanical principles derived from PSO 
(Particle Swarm Optimization). Compared to the PSO 
algorithm, QPSO has a distinct feature in that the particles 
do not have a fixed state during their motion, which is 
analogous to the indeterminate motion in quantum 
mechanics. All particles collectively form a swarm. 

In the QPSO algorithm, the particle position update is 
described by: 

X��(t + 1) = p�� ± β ⋅ |p�� − X��(t)| ⋅ ln (1/u)  (8) 

In which: 

p��: Local gravitational force. 

β: Convergence rate control coefficient. 

X��(t): The position of particle i in the d- dimensional 
space at iteration t. 

u ∈ (0, 1): A random number. 

p�� is calculated as follows: 

p�� = ϕ ⋅ pBest� + (1 − ϕ) ⋅ gBest (9) 

In which: 

ϕ ∈ (0, 1): A random number. 

pBest�: The optimal position of particle i at each 
iteration. 

gBest: The optimal global position of the population. 

pBest� and  gBest is calculated as follows: 

pBest�(t)

=  �
X�(t)                   , if f�X�(t)� <  f(pBest�(t − 1)) 

pBest�(t − 1)   , if f�X�(t)� ≥  f(pBest�(t − 1))
 

(10)

gBest(t)

=  �
pBest�(t)  , if f(pBest�(t)) <  f(gBest(t − 1)) 

gBest(t − 1), if f(pBest�(t)) ≥  f(gBest(t − 1))

(11)

In which: 

f(x): Fitness function. 
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A lower objective function value corresponds to a 
better solution. 

To avoid falling into local extrema traps at the end of 
the iterative process, Sun Jun et al. introduced the 
concept of the optimal mean position mBest in each 
iteration, where the optimal position of all particles is 
quantified and averaged as follows: 

mBest =  
1

m
� p�(t)

�

���

 (12) 

In which: 

m: Number of particles in the population (particle 
count). 

p�(t): Optimal position of particle i at time t. 

Substituting into the above equation: 

X��(t + 1) = p�� ± β ⋅ |mBest − X��(t)| ⋅ ln (1/u) (13) 

5. RESULTS 

The parameters of the inverted pendulum model are 
designed: m1 = 0.08kg, m2 = 0.098kg, L1 = 0.16m,  
L2 = 0.4m, I1 = 0.0248kgm2, I2 = 0.00386kgm2,  
J1 = 0.01Ns/m, J2 = 0.01Ns/m, b1 = 0.0136kg/m2,  
b2 = 0.00256kg/m2. 

 
a) No noise 

 
b) With noise 

Fig. 4. Pendulum angle  using the PSO-FLC and QPSO-FLC controllers 

The simulation results are shown in the two figures 
above, with Fig. 4 representing the response of the 

pendulum angle and Fig. 5 representing the response of 
the arm angle when using the PSO-FLC and QPSO-FLC 
controllers. With the initial pendulum angle of -0.4rad, 
the system quickly stabilizes under 0.1rad after 2 seconds 
and approaches 0 rad after 5 seconds. In comparison, 
QPSO-FLC provides a more stable response with smaller 
oscillation amplitude than PSO-FLC. For the initial arm 
angle, the system stabilizes at 0 rad after 5 seconds, with 
a larger initial oscillation amplitude (-4rad). Again, QPSO-
FLC shows better control performance in reducing 
oscillations compared to PSO-FLC. Thus, QPSO-FLC not 
only improves stability but also minimizes errors in the 
control system, outperforming PSO-FLC in both cases. 
The performance of the proposed controller is more 
clearly shown in Fig. 9. In which, the convergence in the 
optimization process and assessments based on quality 
criteria such as ISE, IAE, ITAE show that QPSO is lower than 
PSO. 

 
a) No noise 

 
b) With noise 

Fig. 5. Arm angle 

 
a) No noise 
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b) With noise 

Fig. 6. Control signal 

 
a) No noise 

 
b) With noise 

Fig. 7. Pendulum angle using the PSO-FLC and QPSO-FLC controllers 

 
a) No noise 

 
b) With noise 

Fig. 8. Pendulum velocity using the PSO-FLC and QPSO-FLC controllers 

 
Fig. 9. Convergence graph (Left) and Evaluation of the controller 

according to different quality criteria for pendulum arm position error (Right) 

Based on the system response graphs when using the 
PSO-FLC and QPSO-FLC controllers, several conclusions 
can be drawn. The QPSO-FLC controller outperforms the 
PSO-FLC in terms of reducing overshoot, shortening the 
response time, and increasing the system's stability. This 
demonstrates that QPSO-FLC is the more optimal 
method for this control problem. 

5. CONCLUSION 

The paper has successfully applied the balance 
control method for the reverse rotation pendulum by 
combining FLC and QPSO optimization algorithm. 
Compared to the traditional method using PSO, QPSO 
shows superior performance with faster convergence 
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rate, better local manipular avoidance, and higher 
stability in noisy environments. Simulation and 
experimental results have confirmed that the QPSO-FLC 
controller significantly reduces oscillation, improves 
response time, and optimizes the quality index of the 
reverse rotation pendulum system. This opens up many 
future research directions, such as improving the QPSO 
algorithm, expanding the application to other 
mechatronic systems, or experimenting with adaptive 
control strategies to further improve the stability of the 
system. 
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