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ABSTRACT 

The rapid development of electric vehicles (EV) has increased the load on 
charging stations (CS), placing significant pressure on distribution power 
systems, particularly with adverse effects on voltage stability, peak loads, and 
high power losses. In this study, we propose a solution combining the 
deployment of distributed generation (DG) and battery energy storage 
systems (BESS) to support electric vehicle charging stations (EVCS) in 
distribution networks. The objective is to minimize power losses and maintain 
stable operating voltage. An improved algorithm, the Chaotic Wild Horse 
Optimizer (CWHO), derived from the original Wild Horse Optimizer (WHO), is 
proposed to achieve better solutions for the problem model. The standard IEEE 
33-bus distribution network is used for testing and simulating solutions with 
Matlab R2022a under two scenarios: integrating DG and BESS over a 24-hour 
framework and increasing the EVCS intensity factor. The results are compared 
with previous studies to demonstrate the effectiveness and superiority of the 
improved CWHO algorithm for the EVCS optimization problem. 
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1. INTRODUCTION 

In recent years, the consumption of fossil fuels has 
grown as the transportation and power generation sectors 
have expanded [1]. These resources not only result in 

significant expenses but also contribute to greenhouse gas 
(GHG) emissions, negatively impacting the environment 
[2]. Amid growing concerns about global warming, the 
electrification of vehicles has raised awareness of electric 
vehicle (EV) adoption, and renewable energy sources (RES) 
have become increasingly important. The goal is to reduce 
GHG emissions from the global energy sector by 50% by 
2050 [3]. The integration of distributed generation (DG) 
and battery energy storage systems (BESS) in distribution 
networks with EV charging stations (EVCS) has proven to 
be a promising solution, offering multiple practical 
benefits. This approach not only optimized RES utilization 
but also maintains voltage stability and power flow during 
operation. Especially with fluctuating load demands, DG 
power injection ensures stable system voltage, minimizing 
the negative impacts of peak load or severe load variations 
[4]. Additionally, BESS also played a vital role in maintaining 
energy reserves during power fluctuations from DG, 
ensuring stability and continuity in power supply during 
sudden demand surges. Furthermore, BESS provides 
flexible power dispatch as needed, reducing dependence 
on conventional energy sources and improving RES 
utilization efficiency [5]. These combined factors enhance 
the performance of distribution networks, optimize energy 
usage, lower costs, and protect the environment. 

Recent studies on EVCS optimization include 
integrating DG and restructuring distribution networks 
using the Whale Optimization Algorithm (WOA) improved 
system efficiency, meet EV charging demands, minimize 
power losses, and enhance operational capabilities [5]. 
Optimal placement of EVCS with Vehicle-to-Grid (V2G) 
provision using the Symbiotic Organisms Search (SOS) 
algorithm enhances operational efficiency, minimizes 
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power losses, and optimizes grid supply through V2G 
techniques [6]. Particle Swarm Optimization (PSO) has 
been used to determine the optimal location and capacity 
of EVCS for unbalanced radial distribution systems (URDS) 
[7]. The Mexican Axolotl Optimization (MAO) and Wild 
Horse Optimizer (WHO) algorithms have been applied to 
identify the placement of EV parking lots with distribution 
systems [8]. Other techniques include PSO [9], optimal 
energy storage allocation using Genetic Algorithm (GA) 
[10], and determining the optimal location, capacity, and 
number of DG units through a Chaotic Random Segment 
Search (CSFS)-enhanced algorithm in distribution grids, 
proposing models to deploy various DG units to improve 
voltage quality at nodes [12]. However, the proposed 
solutions lack integration and fail to fully leverage the 
advantages of individual models, operating only in 
isolated frameworks without high synchronization, 
especially for large-scale problems with multiple 
constraints. Additionally, existing search algorithms did 
not achieve optimal results compared to advanced and 
improved algorithms. 

In this paper, we proposed an improved CWHO 
algorithm based on the original WHO algorithm [13], 
combined with chaotic search functions to effectively 
address the optimization of DG and BESS deployment in 
distribution systems integrated with EVCS. The objective 
was to minimize power losses and maintain stable 
operational voltage. This improvement enhances search 
efficiency and delivers better results compared to the 
original WHO and previously published Chaotic 
Equilibrium Optimizer (CEO) algorithms. The model has 
been simulated on the IEEE-33 bus distribution network 
using Matlab R2022a, with four test scenarios and three 
different power coordination levels. The main 
contributions of the study can be summarized as follows:  

- Proposing an improved algorithm CWHO, which was 
more efficient than the original WHO algorithm;  

- Developing an EVCS optimization model in 
distribution networks that incorporated DG and BESS 
deployment;  

- Applying Matlab R2022a to simulate and solve the 
optimization problem effectively;  

-  Suggesting a practical solution for the real-world 
development of EVCS systems. 
2. PROBLEM MODEL 
2.1. Objective function 

LTF min(P )  (1) 

where PLT is the system power loss total. 

2.2. Constraints 
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where, Nb is node.  

PSUB, QSUB: active, reactive power emitted from the grid. 
PPV,j, QPV,j: active, reactive power from PV. 

PWT,j, QWT,j: active, reactive power WT. 
PL,j, QL,j: total power of active and reactive power of the 

load. 

PCS,j, QCS,j: total active, reactive power of the CS. 

PBESS,j, QBESS,j: total active, reactive power of the BESS. 
PLT,j, QLT,j: total active, reactive power losses. 

Voltage Constraints  
Voltage limit: 

min max
t i t b iV V V ;i 1,2,...,N 0.95 V 1.05      (4) 

Where, min
tV , max

tV  indicate the lower and upper 

voltage, respectively. 
Power limits: 

min max
CS,i CS,i CS,iP P P ;i 1,2,...,n    (5) 

min max
DG,i DG,i DG,jP P P ;i 1,2,...,n    (6) 

min max
BESS,i BESS,i BESS,iP P P ;i=1,2,...,n   (7) 

Where:  
min max
CS,i CS,i CS,iP =P =P  when PCS adjustment limits of CS; 

min max
DG,i DG,i DG,iP =P =P  when PDG adjustment limits of DG; 

min max
BESS,i BESS,i BESS,iP =P =P  when PBESS adjustment limits of 

BESS; 
min min min
CS,i DG,i BESS,iP ,P ,P  minimum active power of  CS, DG, and 

BESS at node i; 
max max max
CS,i DG,i BESS,iP ,P ,P  maximum active power of CS, DG, and 

BESS at node i; 

n the number CS, DG, and BESS integrated and 
connected into the power grid. 
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3. THE CWHO ALGORITHM FOR EVCS PROBLEMS 

3.1. Wild Horse Optimizer (WHO) 

Wild Horse Optimizer (WHO) was a metaheuristic 
algorithm inspired by the behavior of wild horses in 
nature [13]. WHO was a dynamic mechanism that 
simulates how wild horses move, search, and select a 
leader within a herd, where group members interact and 
compete to find the best position, similar to how wild 
horses behave in their natural environment. 

3.2. Creating an initial population 
Generate an initial random group [13]: 

 1 2 n(x) x ,x ,...,x
   

 (8) 

The objective function assesses the random group to 
identify the target value: 

 1 2 n(O) O ,O ,...,O


 (9) 

First, divide the population into several smaller 
groups: 

 If there are N members, the possible number of 
groups is G=[N×PS], where PS represents the proportion 
of stallions in the population, utilized as a control 
parameter. 

 There are G leaders, and the remaining members  
(N-G) are evenly distributed within the groups. 

3.3. Grazing behaviour 
To simulate this process, the formula used to describe 

the movement is: 
j j j j
i,G i,GX 2Zcos(2 RZ) (Stallion - X ) Stallion     (10) 

Where, j
i,GX  is the present position of a member within 

the group, the location of the stallion, Z is the adaptation 
mechanism determined according to (11), R is a random 
variable within the interval of [−2,2]. 
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Where P is a vector of values 0 and 1, 1R


, 3R


 is a 

randomly distributed vector with uniform distribution in 
[0,1], R2 is a random variable within the interval of [0,1], 

IDX the indices of the elements in the random vector 1R


 

satisfies the condition (P==0), TDR is an adaptation 
parameter that begins with a value of 1 and progressively 
decreases based on (12), the final value will be 0. 

1
TDR 1 ier
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 
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 

 (12) 

where ier present iteration and maxier the maximum 
iteration count of the algorithm. 

3.4. Horse mating behaviour 

To model the mating behavior between horses, the 
following equation is used: 

p q z
G,k G,i G, jX Crossover(X ,X ),

i j k,q z end; Crossover Mean



    
 (13) 

where p
G,kX  the position of the horse p in group k, 

which was determined by the position of the horse q in 
group i and the horse z in group j. 

3.5. Group leadership 

The leaders compete for their group to dominate the 
waterhole, and other groups are not allowed to use the 
waterhole until the dominant group leaves. 

i

i

i

G 3
G

G 3

2Zcos(2πRZ) (WH Stallion ) WH     R 0.5
Stallion

2Zcos(2πRZ) (WH Stallion ) WH     R 0.5

    
 

    

if
if

 (14) 

where, 
iGStallion the next position of the group leader 

i, WH the position of the waterhole, 
iGStallion the current 

position of the group leader i, Z the adaptation 
mechanism calculated according to the equation (11), 
and R is a random variable within the interval of [−2, 2]. 

3.6. Exchange and selection of leaders 

The leader is selected arbitrarily to ensure the 
randomness of the algorithm. Then, the leader is chosen 
based on fitness. If a member has better fitness than the 
leader, their positions are swapped according to the 
equation (15) [13]. 

i

i

i i
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where, G,it(X ) and 
iGt(Stallion )  is the fitness value of 

the colt and the stallion. 

3.7. Chaotic Wild Horse Optimizer (CWHO) 

The WHO algorithm was originally based on the 
foraging behavior of wild horses. The addition of the 
chaotic function to the WHO algorithm was a significant 
improvement aimed at enhancing the performance of 
the algorithm in global optimization. The chaotic 
function is used to adjust the movement positions of the 
wild horses, generating unpredictable jumps that help 
the algorithm search for optimal solutions more 
effectively. This not only increased the search capability 
but also ensured diversity and continuous improvement 
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in the optimization process. The two main equations of 
the WHO combined with the chaotic map are presented. 

 

  

new
i i best i

i

X X α X X

β rand 0,1 0.5 γ C

   
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 (16) 

where α and β the control parameters; Xbest the best 
current position of the wild horse; rand(0,1) as random 
number in the range of [0, 1], γ the control parameter for 
the chaotic component; ci the chaotic component, for 
which 10 chaotic functions can be used [14]. 

 new new
i i i

i

i

X   if   f X f(X )
X

X         otherwise

 
 


 (17) 

If the newly discovered position yields a better 
objective function value than the current position, the 
wild horse will shift to that new position. 

3.8. Application of the CWHO Algorithm for the EVCS 
problems  

Step 1: Define the components of the EVCS charging 
and discharging scheduling problem, including the 
objective, objective function, and constraints. 

Step 2: Randomly initialize a population for the CWHO 
algorithm. 

Step 3: Calculate and evaluate the objective function 
for each horse in the population based on its current 
position. 

Step 4: Randomly select a group leader in the initial 
stage to enhance diversity. In later stages, the leader is 
chosen based on fitness, selecting the horse with the best 
fitness as the leader. 

Step 5: Update positions: The leader moves towards 
the waterhole, and other horses move according to the 
leader with a random factor. 

Step 6: Swap positions if a horse has better fitness 
than the leader, swapping their positions. 

Step 7: Maintain diversity by adding the chaotic 
component to the positions of the horses to avoid 
premature convergence, using equation (16). 

Step 8: Check the stopping condition. If the maximum 
number of iterations or the required fitness threshold is 
reached, stop the algorithm. If not, return to Step 4. 

Step 9: Save the best position and fitness in the 
population as the optimal result. 

4. SIMULATION RESULTS 

In this section, the improved CWHO algorithm is 
simulated and tested with 10 different chaotic search 

functions, with a total of 300 iterations, aiming to 
minimize power loss applied to the IEEE 33-bus network. 
The results are compared to select the best performing 
improved algorithm for the problem model. Through the 
simulation search process, the convergence 
characteristics shown in Fig. 1 clearly indicate that the 
best solution belongs to CWHO10. Therefore, CWHO10 is 
proposed as the suitable algorithm for solving the EVCS 
problem. 

 
Fig. 1. The convergence characteristic of CWHO 

4.1. Integrated Energy Dispatch Solutions in 
Distribution Networks 

To further demonstrate the effectiveness of the 
improved CWHO10 compared to WHO in the EVCS 
problem, the model is tested in three cases. 

- Case 1: The system integrates only DG.  

- Case 2: The system integrates DG and BESS.  

- Case 3: The system integrates EVCS, DG, and BESS.  

Input parameters for simulating the cases  

The power of 7 EVCS is fixed at nodes 3, 7, 9, 19, 22, 24, 
26. At the same time, 3 DG units are placed at nodes 14, 
18, 32, and the BESS system is located at nodes 8 and 27. 
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This setup minimizes power loss, stabilizes voltage, 
optimizes energy from DG and renewable sources, and 
enhances system efficiency [15, 16]. 

The power of solar (PV) and wind (WT) energy 
sources over a 24-hour frame is presented in Table 1 to 
simulate and test the power dispatch, with the WT and 
PV sources referenced according to the following 
parameter set [17]. 

Table 1. The typical output power of wind and solar power sources 

Hour PVs WTs Hour PVs WTs 

12--1 am 0 0.25 12--1 1 0.71 

1--2 0 0.235 1--2 0.95 0.805 

2--3 0 0.23 2--3 0.83 0.91 

3--4 0 0.235 3--4 0.72 0.96 

4--5 0 0.22 4--5 0.55 0.86 

5--6 0.05 0.225 5--6 0.3 0.81 

6--7 0.1 0.19 6--7 0.13 0.7 

7--8 0.27 0.17 7--8 0.05 0.585 

8--9 0.5 0.25 8--9 0 0.415 

9--10 0.7 0.37 9--10 0 0.325 

10--11 0.9 0.47 10--11 0 0.29 

11--12 pm 0.95 0.62 11--12 am 0 0.265 

 
Fig. 2. The total power loss across the three cases surveyed 

The simulation results presented in Fig. 2 clearly show 
that in case 1, where only DG is utilized, the system 
experiences the largest power loss, nearly double that of 
case 3, which integrates EVCS, DG, and BESS. Case 2 has 
lower losses than case 1, but still higher than case 3. 
Therefore, it can be inferred that the proposed model 
performs effectively satisfies the power balance 
constraints when DG and BESS are efficiently dispatched. 
This solution also provided more stability as BESS plays a 
key role in quickly responding to power fluctuations to 
maintain stability, while voltage is consistently 
maintained at a high level in all cases. 

Case 1: DG was the sole energy source, providing base 
load over 24 hours. The highest load occurs during the 
off-peak hours (1-8 AM, 7-12 PM), especially during peak 
hours, leading to significant losses when relying solely on 
DG. 

Case 2: DG was supported by BESS, reducing losses 
compared to Case 1, particularly during peak hours (9 AM 
- 6 PM). BESS adds power quickly, reducing the burden on 
DG and saving costs. However, the limited capacity of 
BESS makes it challenging to meet large load fluctuations, 
but it is still an effective balancing solution. 

Case 3: The fully integrated system exhibits the lowest 
losses, particularly during peak hours (1-3 PM). EVCS 
helps with management and efficient distribution, 
reducing the load on DG and making good use of BESS in 
a flexible manner. This solution was highly effective and 
reliable for the development and implementation of 
EVCS.  

4.2. Power Dispatch According to the Charging Levels 
for the EVCS System 

In this part, the charging intensity coefficients are 
established to evaluate the coordination and power 
dispatching capability of the EVCS, DG, and BESS 
components, in order to test the flexibility and efficiency 
of the improved CWHO10 algorithm. Three load levels are 
considered in [18], with the BESS parameters maintained 
as in (4.1), and the EVCS and DG power fixed for both the 
charging and discharging modes. 

As the load increases, the BESS discharges to support 
grid demand, while it charges when surplus power was 
available. At low and medium charge levels, the BESS 
primarily stores surplus powers, with values of -0.5MW 
and -0.275MW, respectively. During heavy charging, 
high EVCS demand and insufficient DG supply led the 
BESS to discharge 0.209MW. Total power lossed across 
consumption stages are 94.06kW, 95.24kW, and 
108.58kW, respectively. In simulations, the CWHO 
algorithm consistently outperforms WHO and CEO in 
terms of power loss, charging power, and system 
stability, demonstrating its effectiveness for EVCS 
optimization with integrated DG and BESS. Moreover, 
voltage stability is maintained within 0.95 (pu) to 1.1 
(pu) across all surveyed nodes, effectively addressing 
fluctuations, peak loads, and localized overloads. This 
highlights the technical robustness of the CWHO 
algorithm for addressing real-world challenges in EVCS 
management. 
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Fig. 3. The voltage node values at the three charging levels  

5. CONCLUSION 

The simulation results conducted across three 
scenarios and three levels of power dispatch for the EVCS 
system demonstrated that the improved CWHO10 
algorithm provides practical effectiveness in optimizing 
the coordination of power for the EVCS model in a 
distribution network integrated with DG and BESS. Each 
applied solution proved the superiority of CWHO when 
compared to the original WHO and previously published 
CEO algorithms. In the proposed simulation cases, the 
integration of DG, BESS, and EVCS shows superior and 
more stable performance compared to other solutions. 
Therefore, this solution is recommended for 
implementation in the development of EVCS 
infrastructure in practice. 
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