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ABSTRACT 

This study presents a numerical investigation of minor head losses in 
three-dimensional (3D) complex geometries using the finite element method 
(FEM). Minor losses commonly occur due to abrupt geometric variations in 
hydraulic systems, leading to significant energy dissipation. Although 
experimental techniques have traditionally been employed to quantify such 
losses, they often encounter limitations in capturing intricate flow structures. 
With the advancements in computational power, numerical simulations have 
emerged as a robust alternative. In this work, FEM is applied to simulate 
incompressible, laminar flow of Newtonian fluids through various 3D 
configurations, including flow past a sphere, sudden expansions, and curved 
bends. The computational domain is discretized using unstructured 
tetrahedral and hexahedral meshes, and a semi-implicit time integration 
scheme is adopted. The numerical model is validated against benchmark 
solutions, and the minor loss coefficient is evaluated for a range of Reynolds 
numbers. The results demonstrate the effectiveness of FEM in accurately 
capturing flow separation and pressure drop in complex 3D geometries. 
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1. INTRODUCTION 

In hydraulic systems, minor head losses primarily 
occur due to geometric irregularities such as abrupt 
expansions, contractions, and bends, which lead to flow 
separation and energy dissipation. Although these losses 
are often neglected in simplified analytical models, these 
local losses can have a significant impact on the overall 
performance and efficiency of hydraulic machinery and 
components [1, 2]. Therefore, accurate estimation of 

minor losses is crucial for the effective design and 
optimization of pipelines, valves, and other hydraulic 
devices. 

Traditionally, empirical and experimental methods 
have been utilized to determine minor loss coefficients [5, 
6]. While experimental studies offer valuable insights into 
fluid behavior, they are often constrained by high costs, 
experimental complexity, and difficulties in reproducing 
arbitrary or highly intricate geometries. Consequently, 
computational methods have gained increasing 
attention in recent decades as a more flexible and cost-
effective alternative for evaluating hydraulic losses. 

With the advancement of computer hardware and 
numerical techniques, computational fluid dynamics 
(CFD) has emerged as an effective tool for analyzing flow 
behavior and quantifying head losses in complex 
domains [7]. For instance, Chemezov [6] applied finite 
volume methods to model fluid resistance in pipeline 
transitions, while Weber et al. [7] utilized commercial CFD 
software to compute pressure losses across a variety of 
geometric configurations. 

Among numerical approaches, the finite element 
method (FEM) offers several advantages: it 
accommodates unstructured meshes, supports complex 
boundary conditions, and is well-suited for solving the 
incompressible laminar Navier-Stokes equations. Several 
previous studies have demonstrated the applicability of 
FEM for simulating two-dimensional fluid flow and 
calculating local loss coefficients in relatively simple 
geometries [8]. 

This study extends the FEM-based modeling 
framework to three-dimensional (3D) flow problems 
involving complex geometries, such as spheres, sudden 
expansions, and curved pipes. The primary objectives are 
to evaluate the minor loss coefficient across a range of 
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Reynolds numbers and to assess the accuracy and 
robustness of FEM in capturing key 3D flow features that 
influence hydraulic losses. 

The remainder of this paper is structured as follows: 
Section 2 outlines the governing equations and 
numerical methodology. Section 3 presents the 
benchmark test cases and corresponding simulation 
results. Section 4 concludes the study and provides 
suggestions for future research. 

2. METHODOLOGY 

2.1. Governing equations 

Assuming an incompressible flow of a Newtonian 
fluid, the governing equations are the incompressible 
Navier-Stokes equations, which can be expressed in the 
Eulerian framework as follows [8, 9]: 

 

    

=0   in (a)

ρ σ in (b)
t

 

 
     

u

u
u u

 (1) 

where ρ, u, σ and  are the fluid density, the fluid 
velocity, the fluid stress tensor, and the fluid domain, 
respectively. 

The fluid domain's boundary is denoted by  . The 

corresponding constitutive equations for fluid flow in Eq. 
(1) can be expressed as follows [10]: 
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where p, μ, τ, and I indicate the pressure, the fluid 
dynamic viscosity, the shear stress tensor, and the 
second-order identity tensor, respectively.  

The description of boundary conditions is as follows: 
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where n denotes the outward unit normal vector of 
the fluid boundary. u and t are the boundaries where 
the velocity u  and traction t  are imposed on the 

Dirichlet and Neumann boundary conditions, 
respectively.  

2.2. Finite element method for incompressible fluid 
flow 

The finite element method (FEM) is a widely used 
technique in computational mechanics, particularly for 
solving problems related to thermal conduction, the 
Poisson equation, and the Navier-Stokes equations. FEM 
is especially effective in handling unstructured meshes 

that result from complex geometries. In this study, we 
employ the fractional step method [11] to solve the 
incompressible Navier-Stokes equations. The diffusion 
terms are discretized in time using the second-order 
implicit Crank-Nicolson scheme, while the convective 
terms are treated with the second-order explicit Adams-
Bashforth scheme. The numerical scheme proceeds 
through three main steps: first, the momentum equation 
is solved to obtain the intermediate velocity field û ; next, 
the pressure is computed by solving the Poisson 
equation; and finally, the velocity is corrected using the 
computed pressure field. 

 
Fig. 1. Degrees of freedom assigned for the P2P1 on the tetrahedral finite 

element 

The P2P1 finite element pair, as illustrated in Fig. 1, is 
employed in this study. In this element, pressure is 
defined at the vertices, while velocity is defined at both 
the vertices and the midpoints of the edges. The 
momentum equations are discretized using the 
consistent streamline upwind Petrov-Galerkin method, 
whereas the pressure equation is discretized using the 
standard Galerkin method. The weak formulations of 
these equations are expressed as follows [8, 11]: 
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for all admissible functions w V, q P,     where 

 1  
 uV w|w H ( ), w 0 on ,      
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 1  
pP q q H ( ), q 0 on ,    | 1

 H ( )  denotes the 

Sobolev space defined on the spatial domain Ω. In 
equation (4), u

i i, j jt u n    denotes the Neumann boundary 

of velocity. It is important to highlight that equation (5) is 
a type of Poison equation [12].  

2.3. Evaluation of the minor loss coefficient 

The energy equation for incompressible fluid flow in a 
horizontal pipe is commonly expressed as follows (with 
the neglect of body force) [7]: 

2 2
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where γ is the fluid specific weight; h1 and hc are the 
major and minor energy loss per unit mass; p1 and p2 are 
the averaged static pressures over the entire cross-
section; v1 and v2 are the average velocities; α1 and α2 are 
the kinetic energy correction factors at the upstream and 
downstream section, respectively.  

The present study focuses exclusively on minor head 
losses that occur due to pipe fittings, bends, or abrupt 
changes in cross-sectional area, which lead to flow 
separation. In these cases, the major head loss (hl) is 
assumed to be negligible and is therefore not considered. 
Minor losses, denoted by hc , are typically characterized 

by a loss coefficient , defined as: 
2
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v
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loss coefficient can be computed using equation (7): 
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In the case of a simple pipeline expansion, the value of 
  is solely dependent on the area of sections, as noted in 
reference [13]. 
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where A1 and A2 are the cross-sectional areas at the 
upstream and downstream sections, respectively. 

To calculate the major loss, we consider two cross-
sections adjacent to the region of minor loss, where the 
flow may not be fully developed. As a result, the kinetic 
energy correction factors α1 and α2 in equation (7) are 
generally less than 2. These correction factors are 
determined using the following relation [13]: 
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3. RESULTS AND DISCUSSIONS 

In this section, the finite element modeling described 
in Section 2.2 is employed to simulate several three-
dimensional (3D) fluid flow problems. First, the algorithm 
is validated by comparing the results of the present code 
with existing benchmark data, including both 
experimental and numerical references. Subsequently, 
the FEM-based approach is applied to other common 3D 
geometries involving laminar flow, and the minor loss 
coefficient is computed for different Reynolds numbers 
using the formulation described in Section 2.3. 

3.1. The flow past a sphere 

The first benchmark problem involves flow past a 
sphere, which is used to validate the numerical algorithm. 
The schematic diagram and domain dimensions are 
shown in Fig. 2. A uniform velocity U0 is prescribed at the 
inlet, and a no-slip boundary condition is applied on the 
surface of the sphere. A zero-pressure condition is 
imposed at the outlet, while far-field boundary 
conditions are applied on the remaining boundaries.  
The computational domain is defined with dimensions  
H = 12D, L = 20D, and X = 4D, where D is the diameter of 
the sphere and X is the upstream region [14]. Time is non-
dimensionalized using the characteristic time scale D/U0, 
and the Reynolds number Re is defined as follows: 

0ρU D
Re

μ
  (11) 

For this three-dimensional case, Reynolds numbers of 
100 and 400 are considered to examine steady and 
unsteady flows, respectively. To validate the numerical 
code, the drag force coefficient is used, which is 
calculated as follows: 

x
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(12) 

where Fx denotes the total force acting on the sphere. 
The computational grid used for this simulation is 
illustrated in Fig. 3, with refined mesh elements 
generated near the sphere to capture flow details 
accurately. To assess grid independence, simulations are 
first performed for Re = 100 using three different mesh 
resolutions consisting of 124,635; 382,858, and 946,912 
nodes. The resulting drag coefficients Cd for each grid, 
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along with comparisons to prior studies by Fornberg et al. 
[15], and Clift et al. [16], are presented in Table 1. Based 
on these results, the intermediate mesh (382,858 nodes) 
is selected for further simulations, as it provides a 
sufficiently accurate solution. The drag coefficient 
obtained from the present FEM-based model shows good 
agreement with the results reported in the literature. The 
steady-state solution for Re = 100 is determined using a 
time-matching approach, in which the solution is 
considered converged when no further change is 
observed over time. The pressure contours near the 
sphere and streamlines of the flow field are illustrated in 
Fig. 4. 

The code is employed to perform simulations across a 
range of Reynolds numbers by varying the fluid viscosity. 
The computed drag coefficient Cd as a function of 
Reynolds number is presented in Fig. 5, along with 
comparisons to previously published results. It is evident 
that the present data show good agreement with the 
experimental measurements reported by Roos and 
Willmarth [17]. It should be noted that for unsteady flows 
(Re > 300), the drag coefficient is computed as a time-
averaged value, while the vortex shedding frequency is 
characterized by the Strouhal number. For the case of  
Re = 400, the present study yields a Strouhal number  
St = 0.13, which is in close agreement with the numerical 
results of Kalro and Tezduyar [18] (St = 0.131) and the 
experimental findings of Goldburg and Florsheim [19]  
(St = 0.127). 

 
Fig. 2. Schematic of the 3D flow past a sphere 

Table 1. Grid independent tests 

Grids Number of nodes Cd 

Coarse grid 124,635 1.058 

Medium grid 382,858 1.084 

Fine grid 946,912 1.085 

Fornberg et al - 1.085 

Clift et al - 1.087 

 
Fig. 3. Mesh near the sphere 

 
Fig. 4. Pressure contour and streamline of flow though the sphere at  

Re = 100 

 
Fig. 5. Drag force coefficient versus Re number 
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3.2. Flow in a three-dimensional sudden expansion 
pipe 

The second simulation investigates fluid flow through 
a three-dimensional (3D) pipe with a sudden expansion, 
as illustrated in Fig. 6, using specified geometric and 
boundary conditions. The inlet channel width is D = 1m, 
with a uniform inlet velocity of uin = 0.1m/s, and a zero-
pressure condition imposed at the outlet. The fluid 
density and dynamic viscosity are set to  = 1000kg/m3 
and  = 5.0Pa.s, respectively, resulting in a Reynolds 
number of 20 at the inlet. A high-resolution unstructured 
mesh is used for this simulation (Fig. 7), comprising 
82,195 nodes and 58,806 elements. The simulation is 
performed with a time step Δt = 0.05s, and a steady-state 
solution is achieved. The resulting velocity field is shown 
in Fig. 8, which clearly illustrates the formation of 
recirculating vortices downstream of the expansion 
region, indicative of local energy losses. Due to the 
sudden area change, a significant pressure drop is 
observed in the expansion zone. 

By varying Re through adjustments in the inlet 
velocity, it is observed that, under fixed inlet velocity and 
outlet pressure conditions, the inlet pressure decreases as 
the Reynolds number increases. This trend arises because 
increasing Re implies decreasing viscosity, which results 
in reduced viscous resistance. Consequently, the minor 
loss coefficient increases, as it depends on the pressure 
differential at the inlet, as defined by equation (8). 
Additionally, higher Reynolds numbers are associated 
with longer and more pronounced recirculation zones 
within the expansion section.  

The minor loss coefficient is determined from the 
numerical simulations and summarized in Table 2. The 
results indicate a decreasing trend in the coefficient as Re 
increases. 

 
Fig. 6. 3D geometry and boundary condition of a sudden expansion 

problem 

 

 
Fig. 7. Grid of a 3D sudden expansion problem 
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Fig. 8. Pressure contour (left) and streamline with u-velocity (right) for 

different Re:  Re = 10 (top), Re = 20 (middle), Re = 50 (bottom) 

Table 2. The minor loss coefficient  obtained by numerical solution  

Re 10 20 50 100 200 

 11.8 6.4 3.3 2.4 1.9 

3.3. Flow in a three-dimensional 90-degree bend  

Lastly, the FEM model is employed to simulate fluid 
flow in a three-dimensional 90-degree bend (elbow). The 
geometry of this benchmark test case, as described in 
Refs. [20, 21], is illustrated in Fig. 9. The pipe has a 
diameter of D = 4mm  and a curvature radius of  
R = 16mm. A tetrahedral mesh is used for this 3D 
simulation, as shown in Fig. 10. Due to symmetry, only 
half of the domain is simulated. A grid independence test 
is conducted, and the comparison of the velocity 
component in the y-direction for three mesh resolutions 
(coarse, medium, and fine) is presented in Fig. 11. The 
medium-resolution grid is selected for subsequent 
simulations, as it provides sufficient accuracy with 
reasonable computational cost. 

 
Fig. 9. Geometry of a curved pipe 

 
(a)                                                                       (b) 

 
(c)                                                                     (d) 

Fig. 10. Tetrahedral grids for curved pipe problem: 

 (a) coarse grid, (b) medium grid, (c) and (d) fine grid 
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Fig. 11. Velocity in y component for test grid 

The simulation is performed until a steady-state 
solution is achieved. At the inlet, a fully developed 
velocity profile is applied, and the Reynolds number is set 
to Re = 300. The velocity distribution along the centerline 
of the mid-plane cross-section (from the inner to the 
outer wall) is shown in Fig. 12. The present results show 
good agreement with both the experimental data and 
the numerical results reported in Ref. [21]. 

 
Fig. 12. Validation of steady flow (Re = 300) 

A steady-state solution is achieved, and the 
corresponding pressure contours are illustrated in Fig. 13. 
The minor loss coefficients, computed from the 
numerical simulations, are summarized in Table 3. As 
observed in the case discussed in Section 3.2, the loss 
coefficient exhibits a decreasing trend with increasing Re. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 13.  Pressure contour versus Re: 
(a) Re = 100, (b) Re = 300, (c) Re = 500, (d) Re = 1000 

Table 3. The minor loss coefficient  obtained by numerical solution  

Re 100 300 500 1000 

 5.04 2.12 1.41 0.83 

4. CONCLUSION 

This study demonstrates the effectiveness of the finite 
element method (FEM) in simulating minor head losses in 
three-dimensional flow domains. The numerical 
approach was validated against classical benchmark 
cases and subsequently applied to more complex 
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geometries, including sudden expansions and 90-degree 
pipe bends. 

The key findings are as follows: 

- FEM implemented on unstructured tetrahedral/ 
hexahedral meshes accurately captures flow separation 
and pressure drops in complex 3D geometries. 

- The computed minor loss coefficient decreases with 
increasing Reynolds number, in agreement with 
theoretical and experimental expectations. 

- The proposed simulation framework offers both 
flexibility and accuracy, making it suitable for the analysis 
and design of hydraulic components in industrial 
applications. 

The results confirm that extending FEM analysis from 
two-dimensional to three-dimensional configurations 
offers enhanced insight into loss mechanisms and 
contributes to the optimization of hydraulic component 
design. Future research will focus on extending the 
methodology to turbulent and transient flow regimes, as 
well as exploring GPU-accelerated computing to improve 
efficiency in large-scale models. 
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