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ABSTRACT 

Wind energy, a clean and sustainable renewable resource, plays a crucial role in advancing global sustainable development. Accurate wind speed estimation 
is essential for assessing the power output potential of wind turbines. This study models wind speed data from the Kon Dong wind farm using statistical methods 
based on the Weibull distribution. Five methods for estimating the Weibull shape and scale parameters were evaluated: the Energy Pattern Factor Method 
(EPFM), Empirical Methods by Lysen (EML) and Justus (EMJ), a hybrid EPFM-EMJ approach, and Method of Moments (MoM). Model performance was assessed 
using root mean square error (RMSE) under both non-seasonal and seasonal conditions. Results show that EPFM, EMJ, EPFM-EMJ, and MoM achieved good fits, 
with RMSE values ranging from 0.022 to 0.024 for non-seasonal data, 0.024 to 0.026 during the strong wind season, 0.005 in the rainy season, and 0.020 to 
0.023 in the transitional season. In contrast, the EML method consistently produced the highest RMSE across all conditions, indicating the poorest fit. These 
findings highlight the effectiveness of EPFM, EMJ, EPFM-EMJ, and MoM in accurately estimating Weibull parameters for wind resource assessment. 

Keywords: Wind energy, Weibull parameters estimation, Numerical methods, Statistical analysis. 

TÓM TẮT 

Năng lượng gió là một nguồn năng lượng tái tạo đóng vai trò quan trọng trong quá trình phát triển toàn cầu. Để đánh giá tiềm năng phát điện của các dự 
án năng lượng gió, cần ước lượng vận tốc gió 1 cách chính xác. Nghiên cứu này mô hình hóa dữ liệu tốc độ gió từ nhà máy điện gió Kon Dong bằng các phương 
pháp thống kê dựa trên phân bố Weibull. Năm phương pháp được đánh giá để ước tính các tham số hình dạng và tỉ lệ của phân bố Weibull bao gồm: hệ số mẫu 
năng lượng (EPFM), phương pháp thực nghiệm của Lysen (EML), phương pháp thực nghiệm của Justus (EMJ), phương pháp lai EPFM-EMJ và phương pháp 
Moment (MoM). Độ chính xác của các phương pháp được đánh giá thông qua sai số căn bậc hai trung bình bình phương (RMSE) trong trường hợp không phân 
mùa và có phân mùa. Kết quả cho thấy các phương pháp EPFM, EMJ, EPFM-EMJ và MoM đạt độ khớp tốt với RMSE dao động từ 0,022 đến 0,024 đối với dữ liệu 
không phân mùa; từ 0,024 đến 0,026 trong mùa gió mạnh; khoảng 0,005 trong mùa mưa; và từ 0,020 đến 0,023 trong mùa chuyển tiếp. Ngược lại, phương pháp 
EML cho kết quả kém nhất với RMSE cao trong cả hai trường hợp. Những kết quả này cho thấy các phương pháp EPFM, EMJ, EPFM-EMJ và MoM đạt độ chính xác 
cao trong việc ước lượng phân bố Weibull phục vụ đánh giá tiềm năng năng lượng gió. 

Từ khóa: Năng lượng gió, ước tính tham số Weibull, phương pháp số, phân tích xác suất. 
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1. INTRODUCTION 

Climate change and the increasing frequency of 
extreme weather events are making the transition to 

renewable energy more important than ever. Among 
these renewable sources, wind power has consistently 
been recognized as one of the most significant, alongside 
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solar power [1]. The growing importance of wind energy 
in the global energy mix necessitates accurate and 
reliable assessments of its potential, which are critical for 
the continued advancement of renewable energy 
technologies. One of the key aspects of wind energy 
assessment is the evaluation of wind speed variations, a 
task commonly performed using the Weibull distribution 
or, in some cases, its special variant, the Rayleigh 
distribution. These distributions are defined by two 
parameters: k, which shapes the distribution, and c, which 
scales the distribution. 

The precise estimation of the k and c parameters in the 
Weibull distribution is crucial and has been extensively 
studied using a variety of numerical methods. Some 
popular numerical methods that can be mentioned 
include the energy pattern factor method (EPFM), 
empirical methods of Justus (EMJ), standard deviation 
method (STDM), graphical method (GM) or the empirical 
methods of Lysen (EML) [2-4]. For instance, Kapen et al. 
[5] conducted a comprehensive study employing ten 
distinct numerical methods to estimate these 
parameters, including EMJ, EML, the method of moments 
(MoM), GM, Mabchour’s method (MMab), the energy 
pattern factor method (EPFM), the maximum likelihood 
method (MLM), the modified maximum likelihood 
method (MMLM), the equivalent energy method (EEM), 
and the alternative maximum likelihood method (AMLM). 
Their study focused on characterizing the wind energy 
potential of Hatiya Island in Bangladesh, demonstrating 
the versatility and effectiveness of these methods.  

In this study, we selected five methods for estimating 
Weibull parameters, including EMJ, EML, EPFM, EPFM-
EMJ, and MoM, to represent a diverse range of 
computational approaches while maintaining a balance 
between comprehensiveness and computational 
complexity. EMJ and EML are classical, straightforward 
methods widely applied in wind energy studies, suitable 
for datasets with stable distributions and minimal noise. 
EPFM is an improvement over empirical methods, aiming 
to enhance accuracy when data exhibit distributional 
deviations or contain outliers. EPFM-EMJ combines the 
approaches of EPFM and EMJ to leverage the strengths of 
both methods. MoM (Method of Moments) estimates 
Weibull parameters using statistical moments (mean and 
variance) of the data. It is known for its computational 
simplicity and ability to provide stable estimates, 
particularly effective for datasets of medium to large 
sizes. The selection of these five methods ensures 
diversity in estimation techniques, from empirical to 

statistical approaches, while avoiding excessive 
computational complexity that might arise from 
selecting too many methods and also ensuring that 
important trends are not overlooked by choosing only 2 - 
3 methods. The effectiveness of these methods in fitting 
wind speed data will be rigorously evaluated using Root 
Mean Square Error (RMSE). 

The main contributions of study can be summarized 
as follows: 

1. Addressing the Gap in Wind Power Research in 
Vietnam: Despite Vietnam’s significant wind power 
potential, research in this field remains limited. This study 
highlights the need for comprehensive wind analysis to 
support informed decision-making and attract 
investments in the sector. 

2. Evaluating the Effectiveness of Numerical Methods 
for Weibull Estimation: One of the critical objectives of 
this research is to explore and compare various numerical 
methods for estimating Weibull distribution parameters, 
which are widely used in wind energy assessments. The 
methods examined in this study include EMJ, EML, EPFM, 
EPFM-EMJ, and MoM. The study provides a detailed 
evaluation of the effectiveness of these methods in 
accurately determine the Weibull parameters. 

3. Data Preprocessing Through Seasonal 
Decomposition: To improve Weibull parameter 
estimation, this study introduces a novel data 
preprocessing approach that decomposes wind data into 
seasonal components. This enhances modeling accuracy; 
addresses data quality challenges and provides a 
practical framework for future wind energy assessments. 

2. MATERIALS AND METHODS 

2.1. Interquartile Range (IQR) 

In this study, the Interquartile Range (IQR) method 
was employed to identify and manage outliers within the 
dataset. The IQR is a statistical measure that captures the 
dispersion of the middle 50% of the data, effectively 
reflecting the variability where the majority of the data 
points are concentrated. Specifically, it is defined as the 
range between the first quartile (Q1) and the third 
quartile (Q3), representing the spread of the central 
portion of the dataset. 

The IQR method is particularly useful for assessing the 
variability of data because it provides insights into how 
tightly or broadly the central values are distributed. A 
larger IQR indicates that the middle 50% of the data is 
spread out over a wider range, suggesting greater 
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variability. Conversely, a smaller IQR signifies that the 
central values are more closely clustered, indicating less 
variability. 

 
Figure 1. The Interquartile Range method 

Outliers are identified using the IQR by calculating the 
upper and lower fences. Data points that exceed the 
upper fence or fall below the lower fence are considered 
outliers. This approach is advantageous because the IQR 
is relatively robust to the influence of outliers, helping to 
mitigate their impact on the analysis. Additionally, the 
IQR method does not rely on any assumptions regarding 
the underlying distribution of the data, such as normality, 
making it a flexible tool for outlier detection. 

The upper and lower fences are determined using the 
following formulas: 

IQR = Q3 − Q1
Upperfence = Q3 + 1.5 ∗ IQR
Lowerfence = Q1 − 1.5 ∗ IQR

 (1)

2.2. Weibull distribution 

Weibull distribution, described in detail by Waloddi 
Weibull [6], is a popular statistical models used regularly 
for analyzing wind speed variations by using two 
functions, the probability density function (PDF) and the 
cumulative distribution function (CDF). 

The Weibull distribution, characterized by two 
parameters k and c, can be illustrated by, 
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where f(v) is the Weibull distribution function, F(v) is 
the Weibull cumulative distribution function, v is the 
wind speed with the units in m/s, k is the shape parameter 
with dimensionless units, c is the scale parameter with 
the units in m/s. 

2.3. Numerical Methods 

2.3.1. Energy pattern factor method (EPFM) 

EPFM is a technique grounded in the analysis of mean 
wind speeds [7], serving as a reliable approach for 
evaluating wind energy potential. This method facilitates 

the estimation of the key parameters, k and c, which 
characterize the wind speed distribution. These 
parameters are crucial for modeling the wind speed 
distribution accurately and are derived through the 
application of specific equations, as outlined below: 
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where E�� is the the energy pattern factor and Γ is the 
gamma function 

2.3.2. Empirical Method of Justus (EMJ) 

EMJ, introduced by Justus in 1977 [8], is a seminal 
approach in the field of wind energy analysis. His method 
leverages statistical measures, specifically the standard 
deviation (σ) and the mean wind speed (v�), to calculate 
the parameters k and c that define the Weibull 
distributions: 
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2.3.3. Method of Moments (MoM) 

MoM is a method utilized by Justus et al. in 1977 [9]. 
Used by many researchers, this method utilized the mean 
wind speed v and the standard deviation σ to evaluate 
the Weibull parameters. 
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2.3.4. Empirical method of Lysen (EML) 

EML was introduced by Lysen in 1982 [10]. Although 
the method's approach to calculating the shape 
parameter k bears resemblance to the equation used in 
the EMJ, its calculation of the scale parameter c diverges, 
as it is determined through a distinct equation, as shown 
in Eq. 12: 

c = v�0.568 +
0.433

k
� −

1

k
 (12)
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2.3.5. EPFM – EMJ 

This method, proposed by Guenoukpati et al. [10], 
represents a hybrid approach that integrates elements 
from both the Energy Pattern Factor Method (EPFM) and 
the Empirical Method of Justus (EMJ). In this approach, 
the scale parameter c is calculated similarly to the 
procedure outlined in the EMJ method, as described in 
Eq. 8. However, the determination of the shape 
parameter k follows a distinct process, which is specified 
as follows: 

k =
1

2
(1 +

3.69

E��
� + (

σ

v
)��.���) (13)

2.4. Evaluation methods 

To evaluate the efficiency of used methods for 
determining parameters of wind speed dataset 
distribution, Root Mean Square Error (RMSE) is used to 
validate the accuracy of the predicted wind speed 
distribution derived from the Weibull PDF function as 
follows: 

RMSE = �
1

N
�(y� − x�)�
�

���

 (14)

Where: 

N: The number of observations 

x�: The frequency of observations 

y�: The frequency of Weibull 

3. DATASET 

3.1. Dataset information 

 
Figure 2. Original wind speed dataset from 2012-12-31 to 2013-12-31 

In this study, the primary dataset utilized was derived 
from wind speed measurements collected at the Kon Dong 
station, located in Gia Lai province, Vietnam. The dataset 
encompasses a continuous time period starting from 
December 31, 2012, at 23:50:00, and extending through 
December 31, 2013, at 23:50:00. The data was recorded at 

ten-minute intervals, resulting in a comprehensive 
collection of 52572 individual data points. 

3.2. Data preprocessing 

The first step of the analysis involved thorough data 
cleaning to ensure the accuracy and reliability of the 
dataset [11]. Data points that showed little to no variation 
over time were removed, as they did not follow the 
overall trend of the data and could negatively impact the 
results. This initial process was essential for refining the 
dataset to focus on meaningful and relevant information. 

Once the data was cleaned, the Interquartile Range 
(IQR) method was used to identify and remove outliers 
from the dataset. The IQR method, known for its 
effectiveness in detecting extreme values, was applied to 
ensure that the dataset was not influenced by irregular or 
unrepresentative data points. Figures 3 and 4 illustrate 
the overall process of the categorization and the usage of 
IQR, resulting in a cleaner and more reliable dataset. 

 
Figure 3. Parameters determination process 

The Kon Dong area (Gia Lai) is located in the Central 
Highlands' tropical monsoon climate zone, characterized 
by two distinct seasons: the rainy season (May to October) 
and the dry season (November to April of the following 
year). After a preliminary analysis of statistical 
characteristics such as the mean, standard deviation, and 
probability distribution of wind speed by season, the 
results show a clear difference between the rainy and dry 
seasons. This indicates that separating the wind data by 
season is necessary for more accurate modeling of the 
Weibull distribution. Additionally, certain transitional 
periods between the two main seasons are categorized 
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as transitional data to avoid introducing noise when 
analyzing the climatic characteristics of each season. 
Based on this, the dataset was divided into two main 
categories following IQR-based outlier removal: a 
seasonal dataset and a non-seasonal dataset. The 
seasonal dataset was further split into three distinct 
periods: the strong wind season, rainy season, and 
transitional season, each representing different climatic 
conditions.  The non-seasonal dataset, meanwhile, 
retained the original cleaned data without accounting for 
seasonal differences. Figure 4 illustrates the dataset after 
being split into three seasons. 

 
Figure 4. Processed dataset after being split into three seasons 

4. RESULTS AND DISCUSSION 
4.1. Comparison of Five Numerical Models Using Non-
Seasonal Data 

In this case study, the parameters k and c of the Weibull 
PDF were meticulously determined based on the wind 
speed data collected between December 2022 and 
December 2023. Table 1 presents the computed values of 
k and c using five distinct numerical methods applied to a 
non-seasonal dataset.  Figure 5 provides a visual 
representation of these parameters to enhance clarity. 
Additionally, the RMSE for the CDF of each model using the 
corresponding k and c value are also illustrated in Table 1.  

An examination of the data in Table 1 reveals that the 
k parameter remains relatively stable across all five 
numerical methods. The estimated shape parameter k 
across the five methods ranges from 2.051 to 2.109, with 
a mean value of approximately 2.074. Although slight 
variations exist, all methods produce k values within a 
narrow band of ±0.03 around the mean, indicating overall 
consistency in the estimation of wind speed distribution 
shape. Conversely, the c parameter exhibits noticeable 
variation. The EPFM, EMJ, EPFM-EMJ, and MoM methods 
yield closely aligned c values around 6.44, whereas the 
EML method produces a significantly lower c value of 
3.95. This variation is also evident in Figure 5, which 
highlights the poor performance of the EML model in 
comparison to the other methods. 

Figure 5 presents the PDF and the CDF for non-
seasonal data. In the PDF, the EML method exhibits a 
sharper and higher peak compared to the other methods, 
deviating significantly from the overall trend of the actual 
data, particularly at the right tails. In contrast, the EPFM, 
EMJ, EPFM-EMJ, and MoM methods demonstrate better 
alignment with the actual data, showing lower peaks and 
more accurate distributions. A similar pattern is observed 
in the CDF figure, where the EML method again performs 
the worst, while the other four methods, EPFM, EMJ, 
EPFM-EMJ, and MoM, show comparable and more 
consistent performance.  

 
Figure 5. Weibull distribution for non-seasonal data of five numerical 

methods 

Table 1. Weibull parameters and metric values for five numerical methods 
using non-seasonal data 

Numerical 
method 

Weibull parameters Evaluation metrics 

k c RMSE 

EPFM 2.109  6.440  0.024 

EMJ 2.062  6.438  0.022 

EML 2.062  3.952  0.254 

MoM 2.051  6.438  0.022 

EPFM-EMJ 2.086  6.439  0.023 

Table 1 presents the Weibull parameters and RMSE 
values for five numerical methods applied to non-seasonal 
data. Among them, MoM and EMJ yields the lowest RMSE 
(0.022), indicating the best agreement with the observed 
data. EPFM and EPFM-EMJ also show relatively low RMSE 
values of 0.024 and 0.023, respectively. In contrast, EML 
shows a significantly higher RMSE of 0.2538, reflecting a 
poor fit. These findings suggest that the four models EPFM, 
EMJ, EPFM-EMJ and MoM have relatively similar 
performance with good fitting for the data while EML 
performed poorly with high RMSE value.  
4.2. Comparison between Seasonal and Non-Seasonal 
Approaches 

This study evaluates the accuracy of five numerical 
models and compares non-seasonal and seasonal 
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analyses. In the non-seasonal approach, IQR is applied to 
the entire dataset, while in the seasonal approach, it is 
applied separately to each of the three seasons. 
Numerical methods in the seasonal analysis yield distinct 
k and c parameters for each season, whereas the non-
seasonal analysis produces a single set for the overall 
wind distribution. Table 2, similar to Table 1, presents the 
k and c values for each season obtained from the dataset.  

Table 2. Weibull parameters and metric values for five numerical methods 
using seasonal data 

Seasons 
Numerical 

method 

Weibull 
parameters 

Evaluation 
metrics 

k C RMSE 

Strong wind 
season 

EPFM 2.868 8.132 0.026 

EMJ 2.919 8.126 0.025 

EML 2.919 4.850 0.367 

MoM 2.914 8.127 0.024 

EPFM-EMJ 2.894 8.129 0.025 

Rainy season 

EPFM 1.864 4.987 0.005 

EMJ 1.869 4.988 0.005 

EML 1.869 3.006 0.242 

MoM 1.857 4.987 0.005 

EPFM-EMJ 1.867 4.988 0.005 

Transitional 
season 

EPFM 2.008 5.688 0.023 

EMJ 1.976 5.687 0.021 

EML 1.976 3.462 0.245 

MoM 1.964 5.686 0.020 

EPFM-EMJ 1.992 5.688 0.022 

As can be seen from Table 2, the results obtained for the 
seasonal approach are relatively similar to Table 1. MoM 
remains the best-performing method, with RMSE values of 
0.024, 0.005, and 0.020 for the strong wind season, rainy 
season, and transitional season, respectively. This is 
followed by EMJ, EPFM-EMJ, EPFM, and finally, EML. 
Additionally, the k and c values exhibit similar trends to 
those observed in Table 1. The k values for all methods 
remain relatively stable at approximately 2.90, 1.86, and 
1.98 for the strong wind season, rainy season, and 
transitional season, respectively. Meanwhile, the c values 
for EML, similar to those in Table 1, are distinctly different 
from the other methods, with values of 4.85, 3.01, and 3.46, 
while the other methods cluster around 8.12, 4.98, and 5.68 
for the respective seasons. Consequently, the EML method 
continues to exhibit the poorest performance among all 
models, as further demonstrated by the PDF and CDF 

visualizations in Figures 6, 7, and 8. This result can be 
explained by the fundamental difference in the EML 
approach, which maximizes the likelihood based on all 
data points, making it more sensitive to outliers and 
irregularities. In contrast, EPFM, EMJ, and MoM rely on 
summary statistics (e.g., moments or quantiles), which 
smooth the data and reduce sensitivity. Since these 
methods share similar assumptions and focus on 
aggregate features, their estimates are more consistent, 
whereas EML’s dependence on raw data can lead to larger 
deviations, especially in the estimation of c. 

To facilitate a more detailed comparison, the results 
from the non-seasonal analysis are also disaggregated by 
season, mirroring the seasonal model. From there, the 
RMSE of the best-performing model, MoM, is used for 
comparison, as illustrated in Table 3. The results from 
Table 3 indicate a significant disparity between the RMSE 
values of the seasonal and non-seasonal datasets using 
MoM, with the seasonal data showing markedly lower 
error rates. Specifically, for the strong wind season, the 
RMSE of the seasonal dataset is 0.024, whereas the non-
seasonal dataset yields much higher values of 0.189. 
Similarly, for the transitional season, the RMSE and MSE 
for the seasonal data is 0.020, compared to 0.064 for the 
non-seasonal data. During the rainy season, the seasonal 
dataset has an RMSE of 0.005, while the non-seasonal 
dataset exhibits substantially higher values of 0.140. 

 
Figure 6. Weibull distribution for raining season of five numerical methods 

 
Figure 7. Weibull distribution for strong wind season of five numerical 

methods 
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Figure 8. Weibull distribution for transitional season of five numerical 

methods 

Table 3. Comparison between a seasonal and non-seasonal approach 
using the MoM method 

Evaluation 
metrics 

Data 
properties 

Seasons 

Strong wind 
season 

Transitional 
season 

Rainy 
season 

RMSE 
With season 0.024 0.020 0.005 

Without 
season 

0.189 0.064 0.140 

These findings clearly demonstrate that segmenting 
the dataset into seasonal components, doing 
preprocessing and applying numerical models tailored to 
each season significantly enhances model performance. 
The reduction in error rates underscores the value of this 
approach, validating the positive impact of season-
specific modelling on the accuracy and reliability of wind 
speed predictions. 

5. CONCLUSION 

This paper presents a statistical analysis of one year of 
wind speed data collected in Kon Dong, Gia Lai, using the 
Weibull distribution. To estimate the distribution 
parameters k and c, five numerical methods were applied: 
EMJ, EML, EPFM, EPFM-EMJ, and MoM. The performance 
of each method was evaluated based on RMSE under two 
conditions: non-seasonal and seasonal. In the non-
seasonal case, the EMJ, EPFM, EPFM-EMJ, and MoM 
methods all achieved RMSE values below 0.025, 
indicating good fit, while EML produced a significantly 
higher RMSE of 0.254. Under the seasonal condition, all 
methods except EML again yielded similar and low RMSE 
values around 0.024, with EML lagging behind due to a 
higher error. These results suggest that, with the 
exception of EML, the tested methods performed 
consistently well across both conditions. Therefore, EMJ, 
EPFM, EPFM-EMJ, and MoM are recommended for future 
wind speed analyses in similar contexts.  
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