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ABSTRACT 
This research presents a continuous element model for solving vibration 

problems of functional graded (FG) stepped cylindrical shells (SCS). Based on the 
First Order Shear Deformation Theory (FSDT) and the equations of the FG 
cylindrical shells, the dynamic stiffness matrix is obtained for each segment of the 
shell having constant thickness. The interesting assembly procedure of continuous 
element method (CEM) is employed for joining those segments in order to analyze 
the dynamic behavior of the FG cylindrical. Free vibrations of different 
configurations of FG stepped cylindrical shells are examined. Effects of the power-
law exponent p, FG materials properties on the free vibration of FG stepped 
cylindrical shells are also presented. The advantages of Continuous Element 
model are confirmed in terms of precision as well as its performance when dealing 
with complex FG structures. 
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1. INTRODUCTION 

Cylindrical shells made of functional graded materials 
(FGMs) are widely used in modern engineering structures 
such as tunnels, storage tanks, pressure vessels, water ducts, 
pipelines and casing pipes and in other applications. 
Therefore, dynamic analysis of shells is important for the 
safety and stability of those structures. The dynamic 
analyses of FGM cylindrical shells have been studied in 
recent years and many significant results are obtained. 
Based on the Flügge thin shell theory, Zhang et al [1] 
presented exact solutions for the vibration of circular 

cylindrical shells with step-wise thickness variations in the 
axial direction. Tornabene [2] focuses on the dynamic 
behavior of moderately thick functionally graded conical, 
cylindrical shells and annular plates by using the 
Generalized Differential Quadrature method. Qu et al. [3] 
developed an efficient domain decomposition algorithm for 
free and forced vibration analysis of the uniform and 
stepped conical shells. Su et al. [4] applied the Rayleigh-Ritz 
method and FSDT to study the free vibrations of FM graded 
cylindrical, conical shells and annular plates with general 
boundary conditions. 

In recent years, Casimir et al [5] have succeeded in 
building the DSM for thick isotropic plate and shells of 
revolution. Recently, Thinh et al proposed the Continuous 
Element Method (CEM) or Dynamics Stiffness Method (DSM) 
[6] has been proposed based on the FSDT is proposed for 
free vibration analysis of thick cross-ply laminated 
composite cylindrical shells. Nam et al. [7] presented a 
continuous element model for solving vibration problems of 
stepped composite cylindrical shells surrounded by 
Pasternak foundations with various boundary conditions. 
Vinh et al. [8-9] present a new Continuous Element for 
analyzing dynamic behavior of stepped FG conical shells 
and annular plates. In this work, a powerful assembly 
procedure has been presented for constructing new 
dynamic stiffness matrix of stepped FG for structures. The 
continuous element formulations here are established 
based on the analytical solution of differential equations for 
structures giving high precision results 

The main purpose of this paper is to present a new 
Continuous Element model to analyze the dynamic 
behavior of the FG stepped cylindrical shells with various 
material characteristics. Based on the assembly procedure of 
single continuous elements, the dynamic stiffness matrix of 
complex stepped cylindrical shells is established. In this 
research, the influences of different parameters are studied 
in detail such as: the power-law exponent p, FGM properties. 
The Continuous Element method can easily be used to 
analyze complex structures and it assured giving the high 
precise solutions. 
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2. THEORETICAL FORMULATIONS 
2.1. Description of the model 

Let’s investigate the FGM cylindrical shell with (x, θ, z) 
coordinates, as shown in Fig. 1. Where x is the coordinate 
long the cylindricals’ generators with the origin placed at the 
middle of the generators, θ is the circumferential coordinate, 
and z is the perpendicular to the cylindricals’ surfaces. R is 
the mid-surface radius of the cylinder; L are lengths of the 
cylinder respectively, thicknesses h. 

 
Fig. 1. Geometry of FGM cylindrical shell 

Typically, FGM shells made from a mixture of two 
material phases. In this paper, it is assumed that the FGM 
shells are made of a mixture of ceramic and metal. Young’s 
modulus E(z), density ρ(z) and Poisson’s ratio (z) are 
assumed to vary continuously through the shells thickness 
and can be expressed as a linear combination: 

   

        
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( )V  , (z) ( )V
 (1) 

in which the subscripts c and m represent the ceramic 
and metallic constituents, respectively, and the volume 
fraction Vc follows two general four-parameter power-law 
distributions [2, 4]: 
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where p is a positive real number (0  p  ) and a, b, c 
dictate the material variation profile through the FG shell 
thickness. It is assumed that Vc + Vm = 1. When p = 0 or p = ∞ 
the FGM material becomes the homogeneous isotropic 
material, as: 

c m c c c

c m m m m

p 0 V 1,    V 0 E(z) E ,    (z) ,    (z)

p V 0,    V 1 E(z) E ,    (z) ,    (z)
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 (3) 

The volume fraction Vc varies depending on the 
coefficients a, b, c and the volume exponent p. When the 
volume exponent p = 1, the volume ratio of ceramic and 
metal changes linearly. when p is different from 1, then the 
volume fraction Vc varies according to different laws are 
available in [2]. 

2.2. Kinematic relations and stress resultants 
The displacement components of an arbitrary point in 

the FG shell for the first-order shear deformation theory are 
expressed as given below [6]:     
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  (4) 

where u, v and w are the displacement components in 
the x,  and z directions, respectively; u0, v0 and wo are the 
middle surface displacements of the shell in the axial, 
circumferential and radial directions, respectively; x and  
represent the transverse normal rotations of the reference 
surface about the -and x-axis. t is the time variable. 

The linear strain-displacement relations in the shell 
space are defined as: 
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Based on Hooke’s law, the stress-strain relations of the 
shell are written as: 
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where Qij(z) are functions of  thickness coordinate z and 
defined as: 
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The stress and moment resultants are given as: 
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where Nx, Nθ and Nxθ are the in-place force resultants, Mx, 
Mθ and Mxθ are moment resultants, Qx, Qθ are transverse 
shear force resultants. The shear correction factor k is 
computed such that the strain energy due to transverse 
shear stresses in Eq. (9) equals the strain energy due to the 
true transverse stresses predicted by the three-dimensional 
elasticity theory [12]. In this paper k is uniformly selected by 
5/6 [6]. Substituting (6)-(7) into (8)-(9), following constitutive 
equations are obtained: 
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The materials employed in the following study are 
assumed to be functionally graded and linearly elastic. So, 
the extensional stiffness Aij, the bending stiffness Dij, and the 
extensional-bending coupling stiffness Bij are respectively 
expressed as: 
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2.3. Equations of motion 
By means of Hamilton’s principle, the equilibrium 

equations of motion based on FSDT can be written in terms 
of the force and moment resultants as [10]: 
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where  
h/2 1 2

0 1 2
h/2

I ,I ,I ρ(z) 1,z ,z dz


    , in which (z)is the 

density of the shell per unit middle surface area. I0, I1 and I2 
are the mass inertias. 

3. DYNAMIC STIFFNESS MATRIX FORMULATION FOR 
FGM CYLINDRICAL SHELL 

The state-vector is yT = {u0, v0, w0, φx, φ, Nx, Nx, Qx, Mx, 
Mx}T. Next, the Fourrier series expansion for state variables 
are written as: 
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where m is the number of circumferential wave. 
Substituting (13) into (10)-(11), a system of ordinary 
differential equations in the x-coordinate for the mth mode 
can be expressed in the matrix form for each circumferential 
mode m as [6]: 

m
m m

d
dx


y

A y                                                                         (14) 

with Am is a 10x10 matrix. The dynamic transfer matrix Tm 
is evaluated as: 
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Finally, the dynamic stiffness matrix K(ω) for cylindrical 
shell is determined by:  

 
1 1

12 11 12
m 1 1

21 22 12 11 22 12

T T T
K ω

T T T T T T

 

 
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Natural frequencies will be extracted from the harmonic 
responses of the structure by using the procedure detailed 
in [6]. 

4. CONTINUOUS ELEMENT FOR FGM STEPPED 
CYLINDRICAL SHELLS 

Consider a FGM cylindrical shell with n steps as shown in 
Fig. 2 with following geometric parameters: Ri, Li and hi are 
radius, length and thickness of each shell step i (i = 1 - n). The 
cylindrical coordinate system (x, , z) is used for studying the 
whole structure. 

 
Fig. 2. Geometry of a stepped FGM cylindrical shell 

In order to calculate the natural frequencies of the 
structure using the CEM, each shell step is represented by a 
single Continuous shell element. Here, it is assumed that the 
shell steps have the same average face and coincide with the 
neutral surface. Then the studied structure is constructed by 
an assembly of those elements.  

The continuity condition will be applied to the 
displacements and internal forces at the neutral face of the 
cylindrical shell elements at the joint positions as follows: 
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  (17) 

where (0), (1) are the initial and final states of each 
cylindrical shell element. 

The assembly diagram of the dynamic stiffness matrix of 
the FGM stepped cylindrical shell is illustrated in Fig. 3 and 
the equation (17) demonstrated the final DSM equation of 
the whole structure.  
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(18) 

The natural frequencies of the structure will be obtained 
by solving the system of equations (18) using the harmonic 
response curves. 

 
Fig. 3. The diagram of the dynamic stiffness matrix coupling of the stepped 

cylindrical shell 
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5. NUMERICAL RESULTS AND DISCUSSION 
5.1. Validation of the present model 

To confirm the reliability of the method, the study 
compared the dimensionless frequencíe of the isotropic 
two-step cylindrical shell (p = ) subjected to clamped-free 
boundary condition with the analytical results of Zhang [1] 
using state space techniques, Flügge shell theory and semi-
analytic results of Qu et al. [3] using the segmentation 
method. 

Table 1. Functional graded materials properties 

   Material 

Properties 

FGM1 FGM2 FGM3     FGM4  FGM5 

Al Si3N4 Al Zirconia Al Al2O3 Ni SUS304 Al Alloy 

E(Gpa) 70 322,3 70 168 70 380 205.1 207,8 70 211 

µ 0.3 0,24 0.3 0.3 0.3 0.3 0.31 0,32 0.3 0.3 

(kg/m3) 2707 2370 2707 5700 2707 3800 8900 8166 2707 7800 

All steps of the shell are made by the same property of 
FGM5I(a=1/b=0.5/c=2/p=10) material. Geometrical parameters of the 
structure are: L/R = 5; 10; h1/R = 0.01; R = 1m; h2/h1 = 0.5;  
L1/L = 0.5; n = 1, m = 1 - 5. The dimensionless frequencies  
Ω = ωR(ρ(1-2)/E)1/2 of two-step metal cylindrical shells 
calculated by different methods are compared in Table 2. 

From Table 2, it is seen that the difference between the 
results of CEM and those of other methods is less than 5% 
which is excellent. The reason for the error can be explained 
as follows: Zhang et al used the Flügge shell theory 
meanwhile our research used Reissner-Midlin's first-order 
shear strain shell theory. The numerical results obtained 
from the CEM program have high convergence and 
accuracy, which has confirmed the reliability of CEM. 

Table 2. Dimensionless frequency comparison of two-step metal cylindrical 
shells 

L/R m C-F 
Zhang [1] 

A 
Qu [3] CEM 

B 
Diffrent (%) 
(A-B)*100/A 

5 1 0,097836 0,097836 0,104253 4,56 
2 0,037795 0,037807 0,038874 2,85 
3 0,022384 0,022411 0,022382 0,01 
4 0,025720 0,025746 0,025327 1,53 
5 0,036488 0,036509 0,035929 1,53 

10 1 0,029463 0,029471 0,030039 1,95 
2 0,010863 0,010877 0,010602 2,40 
3 0,012904 0,012918 0,012369 4,15 
4 0,021767 0,021782 0,021204 2,59 
5 0,034280 0,034298 0,032984 3,78 

5.2. Influences of shell parameters 

5.2.1. The influence of the power-law exponent p on the 
free frequency of the FGM stepped cylindrical shell 

Consider a cylindrical shell with 4 steps made of FGM5 
and with clamp-clamp (C-C) boundary conditions. The steps 

of the shell have the same FGM material which is 
FGM5I(a=1/b=0.5/c=2/p). The SCS has the geometric parameters  
R = 1m; h1/R = 0.01m; h2/ h1 = 2; h3/ h1 = 3; h4/ h1 = 4; L/R = 4; 
L1/ L = L2/ L= L3/ L = 1/4. 

Table 3. The effect of the power-law exponent p on the free frequency of the 
FGM 4 stepped cylindrical shell 

      p 
m  

0 1 5 20 50  

1 278 277,5 274,5 273 272,5 272 

2 152 151,5 150 149,5 149 148,5 

3 102,5 102,5 102 102 101 100 

4 106,5 107 107,5 108,5 106,5 104,5 

5 134 134 135,5 137 134 131 

The influence of the power-law exponent p on the free 
frequencies for a 4-step cylindrical shell made of  
FGM5I(a = 1/b = 0.5/c = 2/p = 1, 5, 20) has detailed in Table 
3 and also investigated using harmonic response curves 
shown in Fig. 4.  

From the obtaiend results in Table 3 and Fig. 4, it is noted 
that the shells with exponent p = 0 (FGM is ceramic) give the 
highest free vibrational frequency values because the 
ceramic has high elastic modulus thus the structure has the 
highest stiffness. On the contrary, the shells using FG 
material with the larger p exponent give smaller the free 
vibrational frequency results, and the shells with p =  (FGM 
is metal) give the smallest free frequencies due to the lowest 
stiffness of shell structure. 

 
Fig. 4. Response curve of the 4 stepped cylindrical shell when the exponent p 

changes 

5.2.2. The effect of FG material on the free frequencies 
of the SCS 

In this section, the natural frequencies are computed for 
stepped cylindrical shells made of different material namely: 
FGM1, FGM2, FGM3, FGM4, FGM5. All shell  steps have the 
same type of volume ratio function as FGMI(a = 1/b = 1/c = 
1/p = 10), the geometrical parameters of the SCS are R = 1m; 
h1/R = 0.02m; h2/ h1 = 1; L/R = 2; L1/ L = L2/ L= L3/ L = 1/2. For 
this study, the boundary condition of the shell is F-C. 

The compared results of the shell natural frequencies are 
described in Table 4 which shows that the stepped 
cylindrical shell made of FGM1 has the highest frequency 
and the shell made of FGM4 gives the lowest frequency. It is 
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clearly to remark that the properties of the FGM1 (see Table 
1) makes the structure have the highest stiffness. Similarly, 
SCS made by FGM4 gives the lowest stiffness. 

Table 4. The effect of FGM on the free vibration frequency of the stepped 
cylindrical shell 

  FGM type 
Frequency(Hz) 

FGM1 FGM2 FGM3 FGM4 FGM5 

f1 129 70 108 61 63 

f2 146 71 124 65 67 

f3 175 96 144 84 86 

f4 230 127 190 111 114 

f5 278 136 236 124 128 

6. CONCLUSIONS 
In this research, a Continuous Element model for FGM 

stepped cylindrical  shells has been successfully constructed. 
The influence of shell and material parameters on the free 
vibration of the structure has been examined. Very good 
agreements are noticed between the results obtained by 
our approach and those of other methods. From the above 
results, it can be concluded that:  

The change of the exponent p causes the change of 
volume fraction of ceramic and metal according to different 
rules. However, when p = 0, the FGM is completely ceramic, 
so the structure has the highest stiffness resulting to the 
highest natural frequencies, and when p = , the FGM is 
completely metal, so the structure has the lowest stiffness 
and the lowest frequencies are obtained. 

The FGM property has a significant influence on the 
natural frequencies of the stepped cylindrical shell. FGM of 
entire ceramic has high elastic modulus and small density 
which gives the structure an important rigidity, thus the 
calculation results of free frequencies are high. 

The developed CE model with its powerful assembling 
procedure can be expanded to study more complex shell 
structures such as: joined cylindrical-conical shells, 
combined cylindrical-conical shell and annular plates, ring-
stiffened shells and those structures surrounded by elastic 
foundations. 
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