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ABSTRACT 

This paper presents the results of establishing a predictive model and 
optimizing the surface roughness (SR) value when turning 40X steel using genetic 
programming (GP) algorithm and grey wolf optimization (GWO) algorithm. The 
regression equation is built by GP algorithm on the basis of 63 practical experiments 
with cutting parameters including rotary tool tilt angle, depth of cut, feedrate and 
cutting speed. The GWO algorithm is used to find the most suitable cutting 
parameters corresponding to the minimum SR value. Furthermore, the influence of 
these parameters on the SR value is also considered. The research results allow to 
evaluate the effectiveness of the algorithms used as well as the basis for improving 
the surface quality in dry turning with selt-driven rotary tool in some specific 
application cases. 
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1. INTRODUCTION 
The self-driven rotary tool hard turning method is one of 

the cutting machining methods that has been developed for 
a long time ago [1]. The self-driven rotary cutting tool is 
widely used in machining hard materials and can replace 
grinding and polishing operations. The self-rotating nature 
of the insert tool as well as its shape has a good response to 
surface quality based on reducing cutting heat and 
increasing tool life [2]. 

Surface roughness is always a factor of leading research 
interest in machining because of its importance. There has 
been a lot of research on this issue with different prediction 
models including Response Surface Methodology (RSM) [3], 
Intelligent algorithm application methods such as artificial 
neural network (ANN) [4], Fuzzy and Adaptive Neuro Fuzzy 

Inference System (ANFIS) [5], Multi-regression analysis 
(MRA) [6], GP [7-14]. The model for predicting Ra value using 
the GREY system theory is described in [3] in end-milling 
operation with 20 experiments and 3 input cutting 
parameters. The online modeling technique integrated into 
the system greatly reduces the setup time of the Ra value 
prediction system.  

Recently, the GP method is also utilized and developed to 
establish regression model. GP is a method quite different 
from other methods in constructing nonlinear regression 
model. There are numerous studies that have applied GP 
technique in surveying and creating nonlinear regression 
model such as in [7-14]. The predicted result in [7] is 15% 
different from the measured data. The feedrate has the 
greatest effect on the Ra value. In [8], tool wear was studied in 
turning Ti-6Al-4V materials through MRA and GP prediction 
models. GP is more effective than MRA. The GP model in [9] is 
applied to predict the Ra value with an accuracy of 91%. 
Furthermore, GP is proved to be the most effective and reliable 
method in [10]. With the Pareto fronts defined, the improved 
GP model in [11] shows superiority over other methods such 
as genetic algorithm (GA) or ANN in building the model robust 
enough to compensate for the uncertainty in the 43 
experiments dataset. The GP-M5 hybrid model is proposed 
[12] in order to model the rapid prototyping process by fused 
deposition modeling. This model is compared with SVM and 
ANFIS methods. Research results confirm that the GP-M5 
hybrid method has a higher degree of compatibility. Extended 
GP in [13] is proven to be more efficient than traditional GP and 
ANN. In [14], cutting parameters influence on geometric 
structure of materials after heat treatment are studied in laser 
processing on industrial robots. Prediction accuracy by GP 
model reached 98.59%.  

This paper presents the establishing results of a model to 
predict and optimize the Ra value in dry turning 40X steel 
with a turning self-driven rotating tool. The GP method is 
used to build the prediction model with specific quality 
evaluation criteria including R2, RMSE and MAPE. The 
optimal results of  Ra value with the corresponding set of 
cutting parameters are found based on the GWO algorithm. 
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Accordingly, the influence of pairs of cutting parameters on 
Ra value is also considered and described in detail. 

2. RESEARCH CONTENTS 

2.1. Experiment setup 
The experimental model for rotary tool hard turning is 

presented with 64 experiments (Ex). These were designed to 
fully satisfy 4 inputs including tool axis tilt angle θ (deg), 
depth of cut ap (mm), feed rate fr (mm/rev) and cutting speed 
vc (m/min). The workpiece material 40X-GOST4543 steel 
with achieve hardness. An EMCOTURN E45 lathe and an 
INGERSOLL RHHW1605MOTN rotary cutter were used to 
perform experiments. The ingredients and mechanical 
properties off 40X steel after heat treatment are shown in 
Table 1. 

Table 1. Material ingredients of 40X steel after heat treatment 

Chemical composition (%) Mechanical properties 

(0.36  0.44)%C; (0.5  0.8)%Mn; 
0.035%P; 0.035%S; (0.17  0.37)%Si; 

(0.8  1.1)%Cr; %Ni ≤ 0.3 

Yield strength:293 MPa; Tensile 
strength: 572MPa; Ductility: 28.6%; 

Hardness: (43  46)HRC 

The machine system with the workpiece and rotary 
cutting tool is shown in Fig. 1. The roughness measuring 
device is a HUATEC-SRT6200 tester. 

 

 
Fig. 1. Machining system and workpieces 

Limits of cutting parameters are divided 3 levels as 
shown in Table 2. 

Table 2. Levels and value ranges of  cutting parameters 

Symbols Parameters  
Levels 

Level 1 (-1) Level 2 (0) Level 3 (1) 
x1 θ (deg) 15 25 35 
x2 ap (mm) 0.2 0.4 0.6 
x3 fr (mm/rev) 0.1 0.3 0.5 
x4 vc (m/min) 100 150 200 

Criteria R2 [14], MSE [15] and MAPE [7] are used to 
evaluate the model. The dataset of 63 experiments 
measured in practice and predicted from the GP algorithm 
is shown in the appendix. 

2.2. GP and GWO algorithms 
2.2.1. GP algorithm 

 
Fig. 2. Tree structure of a model gene 

 
Fig. 3. Algorithm implementation steps in GP 

Basically, GP is an AI-ML platform and can be considered 
as a genetic programming technique with polygenic 
individuals to establish nonlinear regression model [10]. The 
final nonlinear regression model is the evolutionary set of 
polygenic models. These models can be developed to be 
simple or complex depending on the weights of the genes. 
These weights are obtained from the calculation of the least 
squares in evolution. The reliability of the predicted model is 
also evaluated based on the training and test dataset in 
reality compared with the predicted data from the GP 
model. Fig. 2 depicts a tree structure illustrating a gene in 
the general model of GP method. Fig. 3 describes the steps 
to implement the GP algorithm. In which, 
 , ,*, /,mult3,add3,...  F  is the set of functional genes, 

 1 2 3 4x ,x ,x ,xT  is the set of terminal genes, and Z is the 

set of arguments corresponding to the set of F and N is the 
number of generations. 

2.2.2. GWO algorithm 
The Grey Wolf Optimizer algorithm was first introduced 

in 2014 by S. Mirjalili [16]. This algorithm is implemented 
based on mimicking the leadership hierarchy and hunting 
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mechanism of gray wolves in the wild. Four grey wolf 
positions arranged in the order α, β, δ and ω were used to 
simulate the very tight leadership hierarchy in the wolf pack. 
Individual wolf α is considered to be the leader of the pack 
and dominates the pack. The members of the pack must 
obey its orders. Individual wolf β is the subordinate wolf, 
helps α in decision making and is considered the best 
candidate to become α. The individual wolf δ is a wolf 
subject to α and β, but they dominate ω. Wolf individual ω is 
the lowest ranked individual or considered the least 
important individual in the pack and it is only allowed to eat 
last. Accordingly, three main steps are implemented to 
perform the optimization algorithm: search, surround and 
attack the prey. 

Stage 1. Encircling the prey 
To mathematically model the prey encirclement 

behavior of wolves, the following equations are proposed as 

   p. t t D C X X
 

;    pt 1 t .    X X A D
  

 (1)

In which, D


 is the distance vector between the prey and 
any wolf. The t value represents the current iteration. A


 and 

C


 are the coefficient vectors. The pX


 is the position vector 

of the prey. The X


 is the position vector of any gray wolf in 

the pack. The values of the coefficients A


 and C


 are 
calculated as follows 

12 . A a r a
  

; 22C r
 

 (2)

In which, a


 is the hunting velocity. The hunting process 
is repeated continuously, so this value is reduced linearly 
from 2 to 0. The random coefficient vectors 1r


 and 2r


 take 

values in the range [0, 1]. 
Stage 2. Moving and approaching prey 
Grey wolves have the ability to recognize the location of 

their prey and surround them. The hunt is usually guided by 
wolves α, β, and δ. In the search space, the prey position is 
not the optimal position. According to the simulation of 
hunting behavior of grey wolves, the positions of wolves α, 
β, and δ are the best solutions, respectively, because they 
have the best skills to always find potential locations best to 
approach prey. Accordingly, the positions of three 
individuals α, β, and δ will always be updated and saved until 
the end of the loop of the hunting process. The wolves in the 
pack (including wolf ω) are required to update their position 
according to the position of the leader wolf. The location 
update is described as follows: 

α 1 αD C .X X 
  

; β 2 βD C .X X 
  

; 

δ 3 δD C .X X 
  

; 1 α 1 αX X A .D 
  

;  

2 β 2 βX X A .D 
  

; 3 δ 3 δX X A .D 
  

; 

  1 2 3X X X
X t 1

3
 

 

  


 

(3) 

In which, α β,D D
 

 and δD


 are the distance from wolves α, 

β, and δ to the prey. Their position is respectively 1 2,X X
 

 and 

3X


. The positions of the prey for each leader wolf are α β,X X
 

 

and δX


. 

Stage 3. Attacking the prey 
Grey wolves end their hunt by attacking their prey when 

it stops moving. For mathematical modeling of prey 
approach, the value of vector  a


 is decremented. This means 

that the distance between the wolves and the prey 
decreases. Note that the amplitude of the oscillation value 
of A


 also decreases with a


. In other words, A


 is a random 
value in the interval [-2a; 2a]. In which, the value of  a



decreases from 2 to 0 during the iteration. When the random 
values of A


 are in [-1; 1] then the wolf's next position can be 

anywhere between its current position and the position of 
the prey. 

 
Fig. 4. GWO algorithm diagram 

In general, the process of finding the optimal solution in 
the GWO begins with the generation of a random 
population of gray wolves. Each wolf is a solution in the 
optimization algorithm. During iterative foraging and 
hunting, wolves α, β, and δ estimate where prey can move 
to. Each wolf in the pack updates their distance from their 
prey based on the estimates of the pack leaders. The GWO 
algorithm terminates when a final criterion is satisfied 
(about the loop limit or the optimal distance needed by 
wolves α, β, and δ to attack the prey). The schematic diagram 
of the algorithm is shown in Fig. 4. 

2.3. Predictive model and optimal value 
The key parameters in the GP algorithm described above 

include Population size: 350; Max. Generations: 200; Input 
variables: 04; Tournament size: 30; Maximum genes: 20; 
Maximum tree depth: 20; Crossover probability: 0.84; 
Mutation probability: 0.14; Training data set: 90%; Test data 
set: 10%; Function set: Times, minus, plus, tanh, mult3, add3.  
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The regression equation set up based on the GP 
algorithm is shown as follows 

a 1 2 3 4

2
2 4 1 2 1 4

2 2 5 2
1 2 1 3 1 4

5 2 2
2 4 3 4 1 3

2 4
1 1 2 3 1 3 4

R 8.73 0.735x 6.15x 9.2x 0.0209x

0.874tanh(x x ) 0.44x x 0.00129x x

0.00764x x 0.012x x 2.64 10 x x

3.3 10 x x 0.00247x x 0.734x tanh(x )

0.0135x 0.0629x x x 1.97 10 x x x







    

  

   

   

   

        (4)

The results of the regression model evaluation criteria 
with 54 Ex during training and 9 Ex testing are described in 
Table 3. 

Table 3. Results of regression model evaluation 

Criteria 
54 Ex 9 Ex 

R2 MSE MAPE (%) R2 MSE MAPE (%) 

Values 0.997 0.014 4.75 0.98 0.082 11.94 

The predicted results in 54 Ex and verify in 9 EEx of GP are 
depicted in Fig. 5 and Fig. 6. 

 
Fig. 5. Ra values in 54 Ex 

 
Fig 6. Ra values in 9 Ex 

 
Fig 7. Fitness function value 

Based on the regression equation (4) built from the GP 
algorithm, the optimal Ra value and the corresponding 

cutting parameters are determined according to the GWO 
algorithm. The main parameters used in GWO include: 
Number of search agents: 10; Maximum interations: 50; r1, r2 
get random values in the interval [0,1]; the value of a 
decreases from 2 to 0; Lower limit: [15; 0.2; 0.1; 100]; Upper 
limit: [35; 0.6; 0.5; 200]. The results of the fitness function 
calculation are shown in Fig. 5. The Fig. 7 depicts the optimal 
results of the Ra value. The optimal value achieved is 
1.147µm. The cutting parameters corresponding to the 
optimal value are θ = 15 (deg), ap = 0.2 (mm), fr = 0.1 
(mm/rev), vc = 100 (m/min). 

 
rf 0.1 ; cv 100  

Fig. 8. Effect of θ and ap 

 
pa 0.2 ; cv 100  

Fig. 9. Effect of θ and fr 

 
pa 0.2 , rf 0.1  

Fig. 10. Effect of θ and vc 

Fig. 8 shows the influence of the parameters pair (θ and 
ap) on the Ra value when fr = 0.1 (mm/rev) and vc = 100 
(m/min) are fixed. Accordingly, the angle of inclination of the 
cutting tool affects the Ra value more than the depth of cut 
parameter. The larger the angle of inclination, the lower the 
surface quality is. The Ra value does not increase as the 
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cutting depth increases. The influence of the parameter pair 
(θ and fr) is depicted in Fig. 9. 

 
 015 , cv 100  

Fig. 11. Effect of ap and fr 

 
 015 , rf 0.1  

Fig. 12. Effect of ap and vc 

 
 015 , pa 0.2  

Fig. 13. Effect of fr and vc 

Similarly, the angle of inclination θ affects the Ra value 
higher than that of the feedrate parameter. The effect of the 
parameters pair (θ and vc) is also not significantly different 
(Fig. 10). However, when fixing the angle θ = 150, the 
influence of the parameter pairs (ap; fr) in Fig. 11, (ap; vc) in 
Fig. 12 and (vc; fr) in Fig. 13 are shown more clearly. The fr 
parameter affects Ra value more than ap parameter (Fig. 11) 
and vc parameter (Fig. 13). The Ra value increases sharply 
when simultaneously increasing the cutting speed and 
depth of cut (Fig. 12). 

3. CONCLUSION 
In summary, the problem of modeling and optimizing 

the Ra value in dry turning 40X steel by self-driven rotary 

tool has been described and presented in detail. The GP 
algorithm is used to create the Ra value prediction model. 
The assessmented results the predictive model through the 
criteria show high accuracy and reliability with a large 
enough number of experiments in both training and 
verification stages. The optimization value and the 
corresponding set of cutting parameters are determined 
based on the GWO algorithm. Thereby, the influence of 
cutting parameters pairs is mentioned and evaluated 
specifically. Some results can be described as follows 

- The GP algorithm gives a simple to complex predictive 
model based on the tuning parameters in it. However, GP 
allows to create a fairly general model and shows complex 
relationships between cutting parameters. 

- The value of the tool inclination angle has the greatest 
influence on the Ra value of the four parameters considered. 

- The feedrate value has a greater influence on the Ra 
value than the cutting speed and depth of cut. 

- As the value of cutting speed and depth of cut 
increases, the surface quality decreases. 

The above results have important implications in 
choosing reasonable cutting parameters both in terms of 
their priority and value when applying the machining 
method described in this study. Moreover, the GP and GWO 
algorithms show the efficiency in setting the predictive 
model and optimize the objective function also show them 
to be a good choice in similar studies. 

 

APPENDIX 
Table A1. Measurement and predicted results of Ra value with 54 Ex 

No 
Cutting Parameters Actual  

Ra value 
Predicted  

Ra value θ ap fr vc 
1 15 0.2 0.1 200 1.536 1.667 
2 15 0.2 0.3 100 1.258 1.377 
3 15 0.2 0.3 150 1.764 1.613 
4 15 0.2 0.3 200 1.854 1.817 
5 15 0.2 0.5 100 1.875 1.815 
6 15 0.2 0.5 150 2.007 2.002 
7 15 0.2 0.5 200 2.204 2.157 
8 15 0.4 0.1 150 1.593 1.548 
9 15 0.4 0.1 200 1.644 1.675 

10 15 0.4 0.3 200 1.868 1.863 
11 15 0.4 0.5 100 2.107 2.097 
12 15 0.4 0.5 150 2.290 2.202 
13 15 0.4 0.5 200 2.132 2.241 
14 15 0.6 0.1 150 1.689 1.672 
15 15 0.6 0.1 200 1.839 1.684 
16 15 0.6 0.3 150 1.797 1.937 
17 15 0.6 0.3 200 1.795 1.910 
18 15 0.6 0.5 150 2.507 2.402 
19 25 0.2 0.1 100 2.403 2.336 
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20 25 0.2 0.3 100 2.372 2.104 

21 25 0.2 0.3 150 2.167 2.194 

22 25 0.2 0.5 100 2.039 2.235 
23 25 0.4 0.1 100 2.218 2.287 
24 25 0.4 0.1 150 2.349 2.353 
25 25 0.4 0.1 200 2.414 2.354 
26 25 0.4 0.3 100 2.025 2.118 
27 25 0.4 0.3 200 1.964 2.067 

28 25 0.4 0.5 150 2.300 2.250 

29 25 0.4 0.5 200 2.146 2.122 
30 25 0.6 0.1 100 2.214 2.237 
31 25 0.6 0.1 200 2.036 2.107 
32 25 0.6 0.3 100 2.155 2.131 

33 25 0.6 0.3 200 2.007 1.882 

34 25 0.6 0.5 100 2.464 2.387 
35 25 0.6 0.5 150 2.036 2.243 
36 25 0.6 0.5 200 2.240 2.000 
37 35 0.2 0.1 100 1.897 1.898 
38 35 0.2 0.1 150 2.222 2.185 
39 35 0.2 0.1 200 2.400 2.438 
40 35 0.2 0.3 100 1.511 1.685 

41 35 0.2 0.5 100 2.032 1.988 

42 35 0.2 0.5 200 2.263 2.193 

43 35 0.4 0.1 100 1.686 1.898 

44 35 0.4 0.1 150 2.250 2.102 

45 35 0.4 0.3 100 2.114 1.773 
46 35 0.4 0.3 150 1.875 1.898 
47 35 0.4 0.5 150 2.143 2.200 
48 35 0.4 0.5 200 2.197 2.171 
49 35 0.6 0.1 150 2.182 2.019 
50 35 0.6 0.1 200 1.947 2.042 
51 35 0.6 0.3 150 1.736 1.904 
52 35 0.6 0.3 200 1.886 1.847 
53 35 0.6 0.5 100 2.179 2.340 
54 35 0.6 0.5 150 2.114 2.294 

Table A2. Measurement and prediction results of Ra value with 9 Ex 

No 
Cutting Parameters Actual  

Ra value 
Predicted  

Ra value θ ap fr vc 
1 15 0.2 0.1 100 1.754 1.148 
2 15 0.4 0.3 150 1.511 1.775 
3 15 0.6 0.5 200 2.315 2.325 
4 25 0.2 0.3 200 2.168 2.251 
5 25 0.4 0.5 100 2.054 2.311 
6 25 0.6 0.1 150 2.068 2.221 
7 35 0.2 0.5 150 2.207 2.107 

8 35 0.4 0.1 200 2.546 2.240 
9 35 0.6 0.3 100 2.180 1.861 
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