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ABSTRACT 

The self-propelled rotary tool turning (SPRT) process is an effective solution 
for machining hardened steels. In this investigation, the specific cutting energy 
(SCE) model was developed in terms of the inclination angle (I), depth of cut (D), 
feed rate (f), and spindle speed (S). A set of experiments was performed for the 
SKD 61 material to obtain experimental data. The Bayesian regularized feed-
forward neural network was applied to develop the SCE model. The results 
indicated that the model’s precision was acceptable due to the small deviations 
between the predictive and actual data. Moreover, the proposed correlation was 
primarily affected by the depth of cut, feed rate, spindle speed, and inclination 
angle, respectively. Finally, the developed SPRT operation could be utilized for 
machining difficult-to-cut materials. 
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1. INTRODUCTION  
Many attempts have been executed to boost 

performance measures for various SPRT operations. A 
simulation model was developed to precisely capture the 
machining temperature in terms of the depth of cut (D), feed 
rate (f), and turning speed (V) [1]. Kishawy and Wilcox 
emphasized that the SPRT process provided a high 
resistance and long tool life, while only the flank wear was 
produced [2]. A new flank wear model of the SPRT operation 
was developed, while the genetic algorithm was used to find 
the empirical coefficients [3]. Kishawy et al. presented that a 
longer tool life was obtained in rotary turning aerospace 
alloys, while the SR of 0.5μm was produced [4]. The artificial 
neural network-based models of the turning force 
components of the carbon steel were proposed regarding 
the V, D, f, and A [5]. The Oxley analysis-based model was 
applied to develop turning force models for the SPRT 
operation [6]. The results indicated that a high V decreased 

the friction coefficient, while the f had the highest 
contribution. Ezugwu presented that the turning forces and 
friction on the rake face of the SPRT operation were lower 
than the fixed ones, while a higher f decreased the surface 
quality [7]. Rao et al. stated that the average roughness (Ra) 
was decreased by 14.5% at the same material removal rate 
for the rotary turning of EN24 steel using the genetic 
algorithm [8]. Amini and Teimouri indicated that the V of 
4m/min, the D of 0.3mm, and the f of 0.08mm/rev could be 
applied to minimize the cutting forces and Ra for the rotary 
turning of the AA7075 [9].  

The energy consumption in the turning state (Et), 
machining rate, and Ra models of the SPRT process of the 
hardened steel were enhanced by 50.3%, 33.2%, and 19.8%, 
respectively using optimal V, A, f, and D [10]. Nguyen et al. 
indicated that the energy efficiency was improved by 8.9% 
and the machining cost was decreased by 14.8% at the 
optimal SPRT variables [11]. However, the SCE model for the 
SPRT mold steel has not been developed. Moreover, the 
impacts of the process parameters on the SCE model have 
not been explored.  

In this paper, we present the optimization approach and 
experiment setting for the SPRT process of the hardened 
steel. Next, the obtained results are scientifically discussed. 
Finally, conclusions are drawn and future research is 
suggested.  

2. METHODS 

The specific cutting energy (SCE) is defined as a ratio of 
the energy consumed in the SPRT process (TE) and material 
removal volume (MRV) and is computed as: 

TE
SCE

MRV
  (1)

The MRV is computed as: 

cMRV V f D t     (2)

Where the V, f, D, and tc are the turning speed, feed rate, 
depth of cut, and turning time, respectively. 

The TE of the SPRT process consists of six parts, including 
the startup (Es), the standby (Est), transition (Ets), air-turning 
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(Ea), turning (EC), and tool change (Etc) stages. Therefore, the 
TE model can be expressed as:  

s st ts a tcTE E E E E EC E       (3)

Practically, the Est, Ets, Ea, and Etc are constant values. In 
this investigation, the energy consumption in the turning 
stage is considered; hence, the SCE is expressed as: 

c c c

c

P t PEC
SCE

MRV MRR t MRR


  


 (4)

where Pc is the power consumed in the turning stage. 

In the current work, the properties of the cutting insert 
and workpiece are considered as constants. Four key factors 
having the ranges, including the inclination angle, depth of 
cut, feed rate, and spindle speed are exhibited in Table 1. The 
parameter levels are identified based on the characteristics of 
the machine tool and the recommendations of the 
manufacturer of the round insert. These ranges are confirmed 
by the suggestions from the aforementioned works. 

Table 1. Optimizing process factors. 

Symbol Parameters Ranges 
I Inclination angle (deg.) 20-35-50 
D Turning depth (mm) 0.2-0.4-0.6 
f Feed rate (mm/rev.) 0.3-0.5-0.7 
S Spindle speed (RPM) 800-100-1200 

The procedure is expressed as: 

Step 1: Performing turning experiments using the Box-
Behnken design [12]. 

Step 2: The SCE model are developed regarding process 
parameters by means of the BRFFNN approach [13]. 

For the BRFFNN, the weights of the network are random 
variables. The probability density function is expressed as:  

P(D w,β,M)P(w α,M)
P

P(D α,β,M)
  (5)

where D and M present the obtained data and the 
forward multi-layer perceptron, respectively. w and P(w|α,M) 
are the vector and prior knowledge of network weights, 
respectively. When the Gaussian function is employed, the 
likehood-P (D|w, β, M) is expressed as: 

n/2
βdde

1
P(D w,β,M)

π
β




 
 
 

 
(6)

where dd is the sum of squared deviations for data.  

The normalized factor P (D|α, β, M) is expressed as: 

N/2
αdWe

1
P(D w,β,M)

π
α



 
 
 

 
(7) 

where dw is the sum of squared errors for the weights.  

The probability density function is expressed as: 

 
 

F

βd αdd we
1

P
Z α,β

 
  (8)

The numerical experiments of each BRFFNN model are 
executed to calculate the mean square error (MSE), which is 
expressed as:   

 
N

2(y ya P)
i 1

1

N
MSE  


   (9)

where ya and yp are the actual and predictive values, 
respectively. N denotes the number of testing points. The 
best BRFFNN architecture is chosen with the lowest MSE 
value. 

Step 3: Evaluation of the accuracy of the SCE model at 
random points. 

3. EXPERIMENTAL SETTING 
The round bar with the mold material entitled SKD61 

steel is employed as the turning workpiece. The external 
diameter and length of each specimen are 40mm and 
320mm, respectively. The hardened steel having a hardness 
of 56 HRC is selected because of the applications in the 
fabrication of mold pins.  

 
Fig. 1. Experimental setting for the rotary turning process 

 
Fig. 2. Turning power at experimental No. 19 

The experiments are executed with the support of a CNC 
lathe entitled GILDEMEISTER CTX 400 Serie 2 (Fig. 1). A 
power meter labeled KEW6305 is employed to capture 
power components during the rotary turning. An interval of 
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0.1 sec. is used to improve the accuracy of the measured 
data. The example results of the turning experiments are 
shown in Fig. 2. 

4. RESULTS AND DISCUSSIONS 
4.1. Development of SCE model 

Table 2 presents the experimental outcomes. The 
operating parameters of the BRFFNN model, including the 
NH, PF, TF, NL, and LF are shown in Table 3. The 
computational trials of the BRFFNN are performed based on 
the parameter combination entitled Taguchi L18. As a result, 
the optimal data of the HN, PM, TF, HL, and LF are 24, 
MSEREG, logsig, 3, and LearnGDM, respectively (Fig. 3). 

To confirm the precision of the developed ANN model, 
the comparisons between the experimental and predictive 
results are conducted. Table 4 indicates the comparative 
values at different points. As a result, the computed 
deviations of the SCE from lies from -0.73% to 0.74%. The 
small errors revealed that the proposed model ensure the 
prediction accuracy. 

 
Fig. 3. The MSE values with different operating parameters 
Table 2. Experimental data of the rotary turning 

No. I (deg.) D (mm) f (mm/rev.) S (rpm) SCE (J/mm3) 

Experimental data for developing SCE model 

1 20 0.4 0.5 1200 4.31 

2 35 0.6 0.5 800 3.76 

3 50 0.4 0.3 1000 7.54 

4 20 0.6 0.5 1000 3.27 

5 35 0.6 0.5 1200 2.92 

6 35 0.6 0.7 1000 2.38 

7 20 0.4 0.3 1000 7.09 

8 35 0.2 0.5 800 9.58 

9 35 0.4 0.3 800 7.81 

10 50 0.6 0.5 1000 3.42 

11 20 0.2 0.5 1000 8.84 

12 35 0.4 0.7 800 4.12 

13 50 0.4 0.5 800 5.71 

14 35 0.4 0.5 1000 4.52 

15 35 0.4 0.7 1200 3.12 

16 20 0.4 0.5 800 5.47 

17 35 0.2 0.7 1000 6.33 

18 20 0.4 0.7 1000 3.63 

19 35 0.6 0.3 1000 4.81 

20 35 0.4 0.3 1200 6.56 

21 35 0.2 0.5 1200 7.78 

22 35 0.4 0.5 1000 4.53 

23 50 0.2 0.5 1000 9.11 

24 50 0.4 0.7 1000 3.77 
25 50 0.4 0.5 1200 4.49 
26 35 0.2 0.3 1000 12.31 

Experimental data for testing SCE model 
27 25 0.3 0.4 900 8.02 
28 30 0.5 0.6 1100 2.73 

29 40 0.3 0.5 1050 6.15 

30 45 0.6 0.7 1200 2.71 

31 50 0.3 0.6 950 8.15 

32 40 0.5 0.4 1200 4.12 

Table 3. Operating parameters of the BRNN model 

Symbol Operating inputs Ranges 
NH Number of hidden neurons 20; 21; 22; 23; 24; 25 
PF Performance function MSE; MSEREG; SSE 
TF Transfer function Logsig; Purelin; Tansig 
NL Number of hidden layers 1; 2; 3 
LF Learning function LearnGDM; LearnGD 

Table 4. Confirmations of the precision of the developed models 

No. 
SCE (J/mm3) 

Experiment Prediction Errors 
27 8.02 8.04 -0.25 
28 2.73 2.71 0.73 
29 6.15 6.12 0.49 
30 2.71 2.69 0.74 
31 8.15 8.12 0.37 
32 4.12 4.15 -0.73 

 
Fig. 4. The structure of the BFRNN model 
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4.2. ANOVA results  
The ANOVA results of the SCE are shown in Table 5. 

Significant parameters are single factors (I, D, f, and S), 
interactive factors (Df and DS), and quadratic factors (I2, D2, 
f2, and S2). The contributions of the I, D, f, and S are 1.31%, 
30.35%, 20.73%, and 6.63%, respectively. The contributions 
of the Df and DS are 9.68% and 2.66%, respectively. The 
contributions of the I2, D2, f2, and S2 are 3.39%, 14.13%, 
7.26%, and 13.2%, respectively. The values of the R2 value 
(0.9784), the adjusted R2 (0.9684), and the predicted R2 
(0.9562) indicate that the SCE model is adequate. 

Table 5. ANOVA results for the SCE model. 

Source Sum of 
Squares 

Mean 

Square 
F-value p-value Remark Contribution 

(%) 

Model 149.4020 10.6716 31.1539 < 0.0001 Significant  

I 20.6606 20.6606 60.3229 0.0286 Significant 1.31 

D 478.6637 478.6637 1397.5583 < 0.0001 Significant 30.35 

f 326.9423 326.9423 954.5761 < 0.0001 Significant 20.73 

S 104.5648 104.5648 305.2986 < 0.0001 Significant 6.63 

ID 4.8892 4.8892 14.2749 0.7597 Insignificant 0.31 

If 13.5635 13.5635 39.6013 0.404 Insignificant 0.86 

IV 1.4194 1.4194 4.1443 0.873 Insignificant 0.09 

Df 152.6677 152.6677 445.7451 < 0.0001 Significant 9.68 

DS 41.9521 41.9521 122.4878 0.0162 Significant 2.66 

fS 9.9360 9.9360 29.0103 0.5076 Insignificant 0.63 

I2 53.4652 53.4652 156.1029 0.0072 Significant 3.39 

D2 222.8507 222.8507 650.6589 < 0.0001 Significant 14.13 

f2 114.5008 114.5008 334.3088 < 0.0001 Significant 7.26 

S2 31.0698 31.0698 90.7147 0.0348 Significant 1.97 

Residual 3.7680 0.3425     

Total 153.17      

R2 = 0.9754; Adj. R2 = 0.9684; Pred. R2 = 0.9562 

4.3. Parametric influences  
As shown in Fig. 5a, a higher inclined angle decreases the 

contact area between the insert and the workpiece; hence, 
the material volume to be cut decreases. The material is 
softly removed and the SCE decreases. A further angle 
increases the contact area due to the perpendicular 
direction between the cutting tool and workpiece; hence, 
the material volume to be cut increases. The material is 
hardly turned; hence, the SCE increases.  

As shown in Fig. 5b, a higher D increases the contact area 
between the insert and workpiece; hence, a higher thickness 
of the chip is produced. The material is hardly processed; 
hence, the energy consumption increases. Dortunately, the 
SCE is inversely proportional to the increase in the D; hence, 
the SCE decreases. 

As shown in Fig. 5c, a higher f increases the distance 
between the successive turning paths; hence, the turning 

time decreases. The SCE consequently decreases with an 
increased f. 

As shown in Fig. 5d, a higher S increases the machining 
temperature at the turning region, leading to reductions in 
the hardness and strength of the workpiece. The material is 
easily removed; hence, low SCE consumes. 

 
(a) SCE versus I 

 
(b) SCE versus D 

 
(c) SCE versus f 
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(d) SCE versus S 

Fig. 5. The impacts of process parameters on the SCE 

5. CONCLUSIONS 
In this investigation, the specific cutting energy (SCE) 

model of the SPRT process were decreased using optimal 
factors, including the inclination angle (I), depth of cut (D), 
feed rate (f), and spindle speed (S). The BRFFNN-assisted 
models were applied to construct the SCE. The conclusions 
can be expressed as: 

1. For the SCE model, the depth of cut was named as the 
most effective parameter, followed by the feed rate, spindle 
speed, and inclination angle, respectively.  

2. For minimizing the SCE, the middle value of the I could 
be applied, while low D, f, and S were recommended.  

3. The proposed SCE model could be applied to predict 
the response value in the rotary turning.   

4. The impacts of SPRT factors on air pollution and carbon 
emissions have been not analyzed. A holistic optimization 
will be performed to address more environmental metrics.  
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