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1. INTRODUCTION 
Mobile robots are becoming a crucial 

element of contemporary society's progress. It 
does dangerous tasks that are challenging for 
people, including search and rescue 
operations, aiding in epidemic areas, and 
investigating remote worlds. Therefore, a 
crucial aspect of designing mobile robots is 
strategizing the robot's path [1, 2]. The 
trajectory planning will focus on reaching the 
destination quickly, with little energy 
consumption, and avoiding obstacles. Mobile 
robots currently include global route planning, 
local path planning, static path planning, and 
dynamic path planning [4]. Researchers have 
recently published more trajectory-planning 
studies for mobile robots aimed at avoiding 
obstacles in the operating environment. The 
system includes linear, nonlinear, and 
intelligent algorithms. The mobile robots 
described in reference [5] use an Artificial 
Potential Field (APF) algorithm for motion 
planning. The checkerboard strategy was used 
in a different study to find the best mobile route 
by repeatedly running the simulation software. 
Other notable pathfinding methods for static 
obstacle avoidance include the A* algorithm, D 
algorithm, random tree algorithm (RRT), and 
optimization particle swarm (PSO). Based on 
the research results, mobile robots are limited 
to functioning in a static environment. The 
mobile robot adjusted its speed and path to 
avoid obstacles. Orbital navigation planning for 
mobile robots is effective in dynamic scenarios 
[13]. Therefore, artificial intelligence techniques 
like the GA-Fuzzy approach [14] and ANFIS [15] 
have been used. As stated in reference, 
scientists have extensively used the RL 
algorithm in entertainment games and 
information technologies [16]. Several scholars 
have used the algorithm's primary feature, 
simple controller design, to strategize orbital 

ABSTRACT 
The QL controller solved the path optimization problems for mobile robots. The QL algorithm 

predicts the mobile robot's course by learning from prior observations of the surroundings. On the 
other hand, the QL method calculates the states' Q values to offer massive deals to the Q table. The 
QL algorithm had optimal navigation planning for mobile robots in a dynamic environment. The 
mobile robot communicated with the control script by the robot operating system (ROS). The 
mobile robot is code-programmed using Python in the ROS operating system and the QL controller 
on Gazebo software. This QL controller is improved for the computation time, convergence time, 
planning trajectories accuracy, and avoidance of obstacles. Therefore, the QL controller solved the 
path optimization problems for mobile robots. The QL controller's efficiency was evident in its 
ability to adjust to changing environments swiftly, ensuring seamless navigation without 
compromising safety. By leveraging the power of machine learning and advanced algorithms, the 
mobile robot could adapt its trajectory in real-time, responding to obstacles and dynamic 
conditions with precision. This groundbreaking approach optimized path planning and enhanced 
the overall performance of mobile robots, paving the way for a new era of intelligent and 
autonomous robotic systems. 
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TÓM TẮT 
Thuật toán QL dự đoán đường đi của robot di động bằng cách học hỏi từ những quan sát trước 

đó về môi trường xung quanh. Mặt khác, phương pháp QL tính toán các giá trị Q của các trạng thái 
để đưa ra các tính toán lớn cho bảng ma trận Q. Thuật toán QL có kế hoạch điều hướng tối ưu cho 
robot di động trong môi trường năng động. Robot di động giao tiếp với tập lệnh điều khiển bằng 
hệ điều hành robot (ROS). Robot di động được lập trình mã bằng ngôn ngữ Python trên hệ điều 
hành ROS kết hợp với bộ điều khiển QL trên phần mềm Gazebo. Bộ điều khiển QL này được cải thiện 
về thời gian tính toán, thời gian hội tụ, lập kế hoạch quỹ đạo chính xác và tránh chướng ngại vật. 
Do đó, bộ điều khiển QL đã giải quyết được vấn đề tối ưu hóa đường dẫn cho robot di động. Hiệu 
quả của bộ điều khiển QL thể hiện rõ ở khả năng điều chỉnh nhanh chóng theo môi trường thay đổi, 
đảm bảo điều hướng liền mạch mà không ảnh hưởng đến an toàn. Bằng cách tận dụng sức mạnh 
của máy học và các thuật toán tiên tiến, robot di động có thể điều chỉnh quỹ đạo của nó trong thời 
gian thực, phản ứng chính xác với các chướng ngại vật và điều kiện động. Cách tiếp cận đột phá này 
đã tối ưu hóa việc lập kế hoạch đường đi và nâng cao hiệu suất tổng thể của robot di động, mở 
đường cho kỷ nguyên mới của hệ thống rô bốt tự hành thông minh. 
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navigation for mobile robots [17-19]. Conversely, the RL 
method improves the route somewhat and extends the time 
needed for convergence computation. The QL algorithm 
forecasts the trajectory of a mobile robot by analyzing 
previous observations of its environment, as shown by the 
research [20, 21]. Q-Learning (QL) enhances computational 
efficiency and convergence. The QL technique computes 
the Q values of states to generate large deals in the Q table. 
Planning the path for the mobile robot using the QL 
algorithm took a lengthy time due to the need to access all 
action-state pairs in complicated and dynamic scenarios. 
The QL method provided excellent navigation planning for 
mobile robots in a dynamic environment. 

This paper will be broken into four sections. The 
introduction discusses the route planning control issues 
faced by the mobile robot. Section two details the 
mathematical modeling of an operating system designed 
for a mobile robot. Section three will outline the process of 
creating the optimal path for mobile robots via the QL 
algorithm. Part four concludes by evaluating the solution's 
effectiveness for the QL algorithm via simulation. 

2. MATHEMETICAL MODELING OF OPERATING FOR A 
MOBILE ROBOT 
2.1. Obstacle modeling in mobile robot operating 
environment 

 
(a) Obstacles using cubes 

 
(b)3D modelling of indoor environments 

 
(c) Binary map of environment 

(d) Approximation of the obstacles by rectangles 

Fig. 1. Obstacle estimation for route planning 

The obstacle modelling is built on a rectangular box. It is 
considered the optimal geometry that allows easy 
estimation of any obstacle shape among static and dynamic 
path optimization techniques that collect obstacle 
estimates. Obstacles using cubes, as shown in Fig. 1(a). Using 
this geometry to plan the robot in 2D, we can replace blocks 
using this geometry while avoiding 3D obstacles. A realistic 
scene with 3D blocks (chairs, tables, etc.) is depicted in Fig. 
1(b). The binary map of the modelled environment is shown 
in Fig. 1(c). 

2.2. Mathematical model for a mobile robot  
The mobile robot will move from the starting point start 

(xs, ys) to the destination point target (xT, yT), the purpose of 
the robot path planning is to find the optimal path from the 
Start point to the Target point, this path is connected by n 
nodes (Ni, i = 1…n) and (n-1) each segment is 2 consecutive 
nodes connected to each other. Assume the robot moves in 
an environment with m known obstacles as shown in Fig.1. 
Each obstacle is modelled surrounded by a rectangle with 
four vertices p1(x1, y1)…p4(x4, y4) and four edges obs_segtj  
(t  {1…4}, j  {1…m}). Where p1 is the bottom left corner of 
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the rectangle. Similar to obstacles in the environment, the 
mobile robot is also estimated by a rectangle of four point; 
their coordinates change according to the robot's current 
position. The mathematical equation of each segment 
defined by the two points (pk,  pl) of a rectangle enclosing an 
obstacle is given as the following Eq. (1): 

l k
k k

l kk l

l k l k

y y
y y (x x )

x xseg(p , p )
Min(x ,x ) x Max(x ,x )


  

 
  

      (1) 

The following notations describe indices and parameters 
used in the mathematical model: n: is the number of nodes 
on the trajectory created from the starting point to the 
destination; m: is the number of obstacles in the 
environment; i (i  {1…n}): fragment index generated by the 
node  i and i + 1; j (j  {1…m}): index of the  jth obstacle in the 
navigation environment; k, l (k, l  {1…4}): indices of the 
point that defines an obstacle; r (r  {1…4}): index of the 
segment r from the rectangle approximating the mobile 
robot; t (t  {1…4}): index of the segment t that defines the 
rectangle of an obstacle; Ni:ith node of the path; obsj (j  
{1…m}) : jth obstacle; path_segtj (Ni, Ni+1)(i  {1…n-1}) : ith 
segment of the path defined by two nodes (Ni, Ni+1); 
obs_seglj (pk, pl)(k, l  {1…4}) j(j  {1…m}) : lth segment of  jth 
obstacle defined by two points (pk, pl); CurrentPos: current 
location of the robot; Rob_segr (pk, pl)(r, k, l  {1…4}): rth 
segment of the rectangle approximating the robot. 

The mathematical model's decision variables are 
computed as follows:   

   

     
1 2 1 1 i 1 1 tj

i,t,j

1if P ,P P ,P (path_seg ) P ,P (obs_seg )

B j(j 1...m , t(t 1...4 , i(i 1...n

0 Otherwise

    


      



(2) 

   

   
1 2 1 1 r 1 1 tj

r,t,j

1if P ,P P ,P (path_seg ) P ,P (obs_seg )

A j(j 1...m , r,t(t 1...4

0 Otherwise

    


    



 (3) 

The objective function is to find the shortest path is 
written according to the Eq. (4) 

  i n 1 2 2
i 1 i i 1 ii 1

Minimize (x x ) (y y ) , i 1...n 1
 

 
        (4) 

Eq. (5) requires each node to be unique:          

 i 1 i i 1 i(x x ) (y y ), i 1...n 1                (5) 

Path segments do not overlap in the environment by Eq. 
(6). 

     
i n 1 m

i,t , ji 1 j 1
B , i 1...n , t 1...4 , j 1...m

 

 
              (6) 

The way nodes for the robot to overcome obstacles are 
calculated by Eq. (7).                               

   
j m

r ,t ,jj 1
A , r, t 1...4 , j 1...m




                     (7) 

All variables A and B must be binary to satisfy 
requirement Eq. (8).                                

         i,t,j r,t ,jB 0,1 ,A 0,1 , i 1...n ,r,t 1...4 , j 1...m       (8) 

3. Q-LEARNINGS ALGORITHMS IN PATH PLANNING FOR 
MOBILE ROBOTS 

The Q-learning (QL) algorithm uses the concept of 
reward and punishment is created the environment. First, 
state and action variables are developed and discretized 
according to the path-planning job. The reinforcement 
value is then stored in a Q-value function matrix, and a 
reward function is built to meet the conditions of obstacle 
avoidance and the shortest route. To overcome the 
exploration and exploitation balance issue and increase 
convergence speed, the -balancing methods and action 
selection algorithm are devised to improve the QL learning 
process. Following QL training, the optimum pairings of 
state and action are acquired, as are the optimal control 
rules, which are then utilized to execute local route 
planning. Steering rules are included to avoid the 
incomplete visiting issue for the pairings of state and action 
to increase route planning efficiency. Finally, the developed 
procedure was tested. The findings indicate that, even in a 
complex environment, the robot can design an optimum or 
suboptimal course while avoiding obstacles. 

Fig. 2 illustrates how a mobile robot selects an action 
based on the appropriate policy, executes that action, and 
receives status (s) and reward (r) from the navigation 
environment. A state contains the robot's current position in 
its workspace while optimizing paths, while an action is a 
movement the robot makes to transition from one state to 
another. 

 
Fig. 2. Q-learning algorithm 

The Q value is built for the robot to decide to earn the 
greatest reward. It is calculated as follows: 

t t t t t t t 1 t ta A
Q(s ,a ) Q(s ,a ) α r(s ,a ) γmaxQ(s ,a) Q(s ,a )



    
 

 (9) 

Where: α represents the learning rate, γ is the discount 
factor, t t 1

a A
s max Q(s ,a)



 signifies the maximum Q-valua 

among all feasible actions in the new state at, and denotes 
the immediate reward/penalty earned by the agent after 
executing a move at the state st+1.   

Based on Eq. (9) a state matrix - which acts like a lookup 
table. From there, for each state of the robot, find the action 
with the most significant Q value (Fig. 3). 
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Fig.3. Table of Q parameters according to the state-action matrix 

Reinforcement learning is a random process so the Q 
values will differ before and after the action. It is called a 
temporary difference. 

t t t 1 t ta A
TD(a,s) r(s ,a ) γmaxQ(s ,a) Q(s ,a )


       (10) 

Thus, the matrix needs to update the weights based on 
the Eq. (10): 

t t t t 1 t t t t tQ (s ,a ) Q (s ,a ) αTD (s ,a )                   (11) 

where: α is the arithmetic coefficient. Through the times 
the robot performs actions; Q(st, at) it will gradually 
converge.  

A programming program for the Q-learning algorithm in 
robot pathfinding is written as follows: 

Algorithm 1: Classical Q-Learning algorithm begin  

Initialization: 

           Q(st, at) ← {0}, (states and m actions) 

for (each episode): 

(1) set st ← a random state from the states set s; 

while (st ≠ Goal stage) 

(2) Choose at in st by using an adequate policy (ε -greedy, 
etc.); 

(3) Perform action at, and receive reward/penalty and st+1; 

(4) Update Q(st, at) using Eq (9);. 

       st ← st+1 

end-while 

end-for 

end 

The size of the Q table grows exponentially following the 
number of states and actions in an environment with 
conditions. 

 In this situation, the process becomes computationally 
expensive and requires much memory to hold the Q values. 
Imagine a game where each state has 1000 actions. A table 
with a million cells will be needed. Given the vast amount of 
computational time, one of the main problems when using 
the QL algorithm in path optimization is that accessing all 
the Action-State pairs during the mining process is 
complexly generated, which affects the orbital 
convergence. 

4. SIMULATION RESULTS  
In this work, the control robot system built a scenario in 

ROS-Gazebo similar to a simulated factory to bridge the gap 
between the simulated environment and the natural world. 
Various obstacles are constructed to test the suggested QL 
navigation algorithm in this environment. Walls, static 
blocks, movable humans, targets, and mobile robots were all 
part of the domain. The mobile robot must approach the 
destination while avoiding static and dynamic impediments, 
such as those shown in Fig. 4. 

 
Fig. 4. Table of Q parameters according to the state-action matrix 

A robot's training procedure might include numerous 
cycles. Each cycle terminates when the robot obtains the 
goal location, encounters an impediment in its route, or 
when the timer for each cycle runs out. Various obstacles, 
such as people, static blocks, and walls, were randomly put 
in this environment to evaluate the efficacy of the proposed 
mobile robot navigation algorithm. The robot aims for static 
and dynamic obstacles by maintaining a safe distance from 
them and reaching the right spots in the least possible time 
and space. 

Fig. 5 depicts a realistic environment for route planning 
for a mobile robot, with a workspace of 12x12m and a 
minimum distance between blocks of 0.6m. The robot 
begins at location (1, 1) for all tests and moves to the goal 
(11, 11). Table 3 summarizes for 4 simulation case. 

 
(a) Case 1 
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(b) Case 2 

 
(c) Case 3 

 
(d) Case 4 

Fig. 5. Depicts a realistic environment for route planning for a mobile robot 

Table 1. Simulation results on ROS-Gazebo 

No Distance (m) Run time(s) 

Case 1 17.758 12,314 

Case 2 18.416 14.637 

Case 3 18.690 12,320 

Case 4 18.420 14.640 

In all 4 cases, simulation results show promising results 
for the QL algorithm in orbiting planning for mobile robots, 
especially regarding time. In addition, the simulation results 
in Table 1 show that QL controllers ensure the mobile robot 
plans the optimal path. The DQL's trajectory is improved 
(shorter distance). At the same time, the computation time 
to establish the optimal rotation and motion is much better. 
In summary, the results demonstrate the superiority of the 
QL algorithm in orbiting planning for mobile robots. Not 
only does it excel in terms of efficiency and speed, but it also 
guarantees optimal path planning for the mobile robot. The 
enhancements observed in the trajectory of the DQL further 
underscore the effectiveness of QL controllers in minimizing 
distances travelled. These findings highlight the significant 
computation time improvements for optimal rotation and 
motion, solidifying the QL algorithm as a top choice for 
mobile robot orbiting planning. 

5. CONCLUSION 
This work introduces the QL algorithm as a practical 

approach for creating paths for mobile robots in 
complicated and dynamic situations. The algorithm assists 
the robot in selecting the most suitable action, expedites the 
robot's learning process, determines the ideal trajectory, 
and provides the optimal Q value for each pair. Act - Operate 
within an intricate setting. The simulation results for robots 
utilizing the QL algorithm have shown the effectiveness and 
superiority of the proposed method in terms of (1) quickly 
and safely producing optimal or near-optimal paths, (2) 
being deterministic and taking only a few milliseconds to 
calculate a satisfactory solution in terms of length and safety; 
and (3) QL-based algorithms being non-deterministic and 
struggling to find a suitable balance between convergence 
speed and path length. The suggested QL performance has 
shown remarkable improvement compared to the latest 
relevant work. Finally, the proposed optimal path for mobile 
robots was increase. 
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