
P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 60 - No. 4 (Apr 2024) HaUI Journal of Science and Technology 21

OPTIMAL NAVIGATION PLANNING FOR MOBILE ROBOTS
USING REINFORCEMENT LEARNING (RL) ALGORITHM
TỐI ƯU ĐIỀU HƯỚNG CHO ROBOT TỰ HÀNH SỬ DỤNG THUẬT TOÁN HỌC TĂNG CƯỜNG

Ho Manh Tien1, Vo Thanh Ha1,*

DOI: http://doi.org/10.57001/huih5804.2024.120

1. INTRODUCTION
Mobile robots are becoming a crucial

element of contemporary society's progress. It
does dangerous tasks that are challenging for
people, including search and rescue
operations, aiding in epidemic areas, and
investigating remote worlds. Therefore, a
crucial aspect of designing mobile robots is
strategizing the robot's path [1, 2]. The
trajectory planning will focus on reaching the
destination quickly, with little energy
consumption, and avoiding obstacles. Mobile
robots currently include global route planning,
local path planning, static path planning, and
dynamic path planning [4]. Researchers have
recently published more trajectory-planning
studies for mobile robots aimed at avoiding
obstacles in the operating environment. The
system includes linear, nonlinear, and
intelligent algorithms. The mobile robots
described in reference [5] use an Artificial
Potential Field (APF) algorithm for motion
planning. The checkerboard strategy was used
in a different study to find the best mobile route
by repeatedly running the simulation software.
Other notable pathfinding methods for static
obstacle avoidance include the A* algorithm, D
algorithm, random tree algorithm (RRT), and
optimization particle swarm (PSO). Based on
the research results, mobile robots are limited
to functioning in a static environment. The
mobile robot adjusted its speed and path to
avoid obstacles. Orbital navigation planning for
mobile robots is effective in dynamic scenarios
[13]. Therefore, artificial intelligence techniques
like the GA-Fuzzy approach [14] and ANFIS [15]
have been used. As stated in reference,
scientists have extensively used the RL
algorithm in entertainment games and
information technologies [16]. Several scholars
have used the algorithm's primary feature,
simple controller design, to strategize orbital

ABSTRACT
The QL controller solved the path optimization problems for mobile robots. The QL algorithm

predicts the mobile robot's course by learning from prior observations of the surroundings. On the
other hand, the QL method calculates the states' Q values to offer massive deals to the Q table. The
QL algorithm had optimal navigation planning for mobile robots in a dynamic environment. The
mobile robot communicated with the control script by the robot operating system (ROS). The
mobile robot is code-programmed using Python in the ROS operating system and the QL controller
on Gazebo software. This QL controller is improved for the computation time, convergence time,
planning trajectories accuracy, and avoidance of obstacles. Therefore, the QL controller solved the
path optimization problems for mobile robots. The QL controller's efficiency was evident in its
ability to adjust to changing environments swiftly, ensuring seamless navigation without
compromising safety. By leveraging the power of machine learning and advanced algorithms, the
mobile robot could adapt its trajectory in real-time, responding to obstacles and dynamic
conditions with precision. This groundbreaking approach optimized path planning and enhanced
the overall performance of mobile robots, paving the way for a new era of intelligent and
autonomous robotic systems.

Keywords: Mobile robot, RL, ROS, QL.

TÓM TẮT
Thuật toán QL dự đoán đường đi của robot di động bằng cách học hỏi từ những quan sát trước

đó về môi trường xung quanh. Mặt khác, phương pháp QL tính toán các giá trị Q của các trạng thái
để đưa ra các tính toán lớn cho bảng ma trận Q. Thuật toán QL có kế hoạch điều hướng tối ưu cho
robot di động trong môi trường năng động. Robot di động giao tiếp với tập lệnh điều khiển bằng
hệ điều hành robot (ROS). Robot di động được lập trình mã bằng ngôn ngữ Python trên hệ điều
hành ROS kết hợp với bộ điều khiển QL trên phần mềm Gazebo. Bộ điều khiển QL này được cải thiện
về thời gian tính toán, thời gian hội tụ, lập kế hoạch quỹ đạo chính xác và tránh chướng ngại vật.
Do đó, bộ điều khiển QL đã giải quyết được vấn đề tối ưu hóa đường dẫn cho robot di động. Hiệu
quả của bộ điều khiển QL thể hiện rõ ở khả năng điều chỉnh nhanh chóng theo môi trường thay đổi,
đảm bảo điều hướng liền mạch mà không ảnh hưởng đến an toàn. Bằng cách tận dụng sức mạnh
của máy học và các thuật toán tiên tiến, robot di động có thể điều chỉnh quỹ đạo của nó trong thời
gian thực, phản ứng chính xác với các chướng ngại vật và điều kiện động. Cách tiếp cận đột phá này
đã tối ưu hóa việc lập kế hoạch đường đi và nâng cao hiệu suất tổng thể của robot di động, mở
đường cho kỷ nguyên mới của hệ thống rô bốt tự hành thông minh.

Từ khóa: Robot di động, RL, ROS, QL.

1Faculty of Electrical and Electronics Engineering, University of Transport and Communications,
Vietnam
*Email: vothanhha.ktd@utc.edu.vn
Received: 20/01/2024
Revised: 20/3/2024
Accepted: 25/4/2024

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 60 - Số 4 (4/2024) 22

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

navigation for mobile robots [17-19]. Conversely, the RL
method improves the route somewhat and extends the time
needed for convergence computation. The QL algorithm
forecasts the trajectory of a mobile robot by analyzing
previous observations of its environment, as shown by the
research [20, 21]. Q-Learning (QL) enhances computational
efficiency and convergence. The QL technique computes
the Q values of states to generate large deals in the Q table.
Planning the path for the mobile robot using the QL
algorithm took a lengthy time due to the need to access all
action-state pairs in complicated and dynamic scenarios.
The QL method provided excellent navigation planning for
mobile robots in a dynamic environment.

This paper will be broken into four sections. The
introduction discusses the route planning control issues
faced by the mobile robot. Section two details the
mathematical modeling of an operating system designed
for a mobile robot. Section three will outline the process of
creating the optimal path for mobile robots via the QL
algorithm. Part four concludes by evaluating the solution's
effectiveness for the QL algorithm via simulation.

2. MATHEMETICAL MODELING OF OPERATING FOR A
MOBILE ROBOT
2.1. Obstacle modeling in mobile robot operating
environment

(a) Obstacles using cubes

(b)3D modelling of indoor environments

(c) Binary map of environment

(d) Approximation of the obstacles by rectangles

Fig. 1. Obstacle estimation for route planning

The obstacle modelling is built on a rectangular box. It is
considered the optimal geometry that allows easy
estimation of any obstacle shape among static and dynamic
path optimization techniques that collect obstacle
estimates. Obstacles using cubes, as shown in Fig. 1(a). Using
this geometry to plan the robot in 2D, we can replace blocks
using this geometry while avoiding 3D obstacles. A realistic
scene with 3D blocks (chairs, tables, etc.) is depicted in Fig.
1(b). The binary map of the modelled environment is shown
in Fig. 1(c).

2.2. Mathematical model for a mobile robot
The mobile robot will move from the starting point start

(xs, ys) to the destination point target (xT, yT), the purpose of
the robot path planning is to find the optimal path from the
Start point to the Target point, this path is connected by n
nodes (Ni, i = 1…n) and (n-1) each segment is 2 consecutive
nodes connected to each other. Assume the robot moves in
an environment with m known obstacles as shown in Fig.1.
Each obstacle is modelled surrounded by a rectangle with
four vertices p1(x1, y1)…p4(x4, y4) and four edges obs_segtj
(t  {1…4}, j  {1…m}). Where p1 is the bottom left corner of

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 60 - No. 4 (Apr 2024) HaUI Journal of Science and Technology 23

the rectangle. Similar to obstacles in the environment, the
mobile robot is also estimated by a rectangle of four point;
their coordinates change according to the robot's current
position. The mathematical equation of each segment
defined by the two points (pk, pl) of a rectangle enclosing an
obstacle is given as the following Eq. (1):

l k
k k

l kk l

l k l k

y y
y y (x x)

x xseg(p , p)
Min(x ,x) x Max(x ,x)


  

 
  

 (1)

The following notations describe indices and parameters
used in the mathematical model: n: is the number of nodes
on the trajectory created from the starting point to the
destination; m: is the number of obstacles in the
environment; i (i  {1…n}): fragment index generated by the
node i and i + 1; j (j  {1…m}): index of the jth obstacle in the
navigation environment; k, l (k, l  {1…4}): indices of the
point that defines an obstacle; r (r  {1…4}): index of the
segment r from the rectangle approximating the mobile
robot; t (t  {1…4}): index of the segment t that defines the
rectangle of an obstacle; Ni:ith node of the path; obsj (j 
{1…m}) : jth obstacle; path_segtj (Ni, Ni+1)(i  {1…n-1}) : ith
segment of the path defined by two nodes (Ni, Ni+1);
obs_seglj (pk, pl)(k, l  {1…4}) j(j  {1…m}) : lth segment of jth
obstacle defined by two points (pk, pl); CurrentPos: current
location of the robot; Rob_segr (pk, pl)(r, k, l  {1…4}): rth
segment of the rectangle approximating the robot.

The mathematical model's decision variables are
computed as follows:

   

     
1 2 1 1 i 1 1 tj

i,t,j

1if P ,P P ,P (path_seg) P ,P (obs_seg)

B j(j 1...m , t(t 1...4 , i(i 1...n

0 Otherwise

    


      



(2)

   

   
1 2 1 1 r 1 1 tj

r,t,j

1if P ,P P ,P (path_seg) P ,P (obs_seg)

A j(j 1...m , r,t(t 1...4

0 Otherwise

    


    



 (3)

The objective function is to find the shortest path is
written according to the Eq. (4)

  i n 1 2 2
i 1 i i 1 ii 1

Minimize (x x) (y y) , i 1...n 1
 

 
      (4)

Eq. (5) requires each node to be unique:

 i 1 i i 1 i(x x) (y y), i 1...n 1       (5)

Path segments do not overlap in the environment by Eq.
(6).

     
i n 1 m

i,t , ji 1 j 1
B , i 1...n , t 1...4 , j 1...m

 

 
     (6)

The way nodes for the robot to overcome obstacles are
calculated by Eq. (7).

   
j m

r ,t ,jj 1
A , r, t 1...4 , j 1...m




   (7)

All variables A and B must be binary to satisfy
requirement Eq. (8).

         i,t,j r,t ,jB 0,1 ,A 0,1 , i 1...n ,r,t 1...4 , j 1...m      (8)

3. Q-LEARNINGS ALGORITHMS IN PATH PLANNING FOR
MOBILE ROBOTS

The Q-learning (QL) algorithm uses the concept of
reward and punishment is created the environment. First,
state and action variables are developed and discretized
according to the path-planning job. The reinforcement
value is then stored in a Q-value function matrix, and a
reward function is built to meet the conditions of obstacle
avoidance and the shortest route. To overcome the
exploration and exploitation balance issue and increase
convergence speed, the -balancing methods and action
selection algorithm are devised to improve the QL learning
process. Following QL training, the optimum pairings of
state and action are acquired, as are the optimal control
rules, which are then utilized to execute local route
planning. Steering rules are included to avoid the
incomplete visiting issue for the pairings of state and action
to increase route planning efficiency. Finally, the developed
procedure was tested. The findings indicate that, even in a
complex environment, the robot can design an optimum or
suboptimal course while avoiding obstacles.

Fig. 2 illustrates how a mobile robot selects an action
based on the appropriate policy, executes that action, and
receives status (s) and reward (r) from the navigation
environment. A state contains the robot's current position in
its workspace while optimizing paths, while an action is a
movement the robot makes to transition from one state to
another.

Fig. 2. Q-learning algorithm

The Q value is built for the robot to decide to earn the
greatest reward. It is calculated as follows:

t t t t t t t 1 t ta A
Q(s ,a) Q(s ,a) α r(s ,a) γmaxQ(s ,a) Q(s ,a)



    
 

 (9)

Where: α represents the learning rate, γ is the discount
factor, t t 1

a A
s max Q(s ,a)



 signifies the maximum Q-valua

among all feasible actions in the new state at, and denotes
the immediate reward/penalty earned by the agent after
executing a move at the state st+1.

Based on Eq. (9) a state matrix - which acts like a lookup
table. From there, for each state of the robot, find the action
with the most significant Q value (Fig. 3).

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 60 - Số 4 (4/2024) 24

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

Fig.3. Table of Q parameters according to the state-action matrix

Reinforcement learning is a random process so the Q
values will differ before and after the action. It is called a
temporary difference.

t t t 1 t ta A
TD(a,s) r(s ,a) γmaxQ(s ,a) Q(s ,a)


   (10)

Thus, the matrix needs to update the weights based on
the Eq. (10):

t t t t 1 t t t t tQ (s ,a) Q (s ,a) αTD (s ,a)  (11)

where: α is the arithmetic coefficient. Through the times
the robot performs actions; Q(st, at) it will gradually
converge.

A programming program for the Q-learning algorithm in
robot pathfinding is written as follows:

Algorithm 1: Classical Q-Learning algorithm begin

Initialization:

 Q(st, at) ← {0}, (states and m actions)

for (each episode):

(1) set st ← a random state from the states set s;

while (st ≠ Goal stage)

(2) Choose at in st by using an adequate policy (ε -greedy,
etc.);

(3) Perform action at, and receive reward/penalty and st+1;

(4) Update Q(st, at) using Eq (9);.

 st ← st+1

end-while

end-for

end

The size of the Q table grows exponentially following the
number of states and actions in an environment with
conditions.

 In this situation, the process becomes computationally
expensive and requires much memory to hold the Q values.
Imagine a game where each state has 1000 actions. A table
with a million cells will be needed. Given the vast amount of
computational time, one of the main problems when using
the QL algorithm in path optimization is that accessing all
the Action-State pairs during the mining process is
complexly generated, which affects the orbital
convergence.

4. SIMULATION RESULTS
In this work, the control robot system built a scenario in

ROS-Gazebo similar to a simulated factory to bridge the gap
between the simulated environment and the natural world.
Various obstacles are constructed to test the suggested QL
navigation algorithm in this environment. Walls, static
blocks, movable humans, targets, and mobile robots were all
part of the domain. The mobile robot must approach the
destination while avoiding static and dynamic impediments,
such as those shown in Fig. 4.

Fig. 4. Table of Q parameters according to the state-action matrix

A robot's training procedure might include numerous
cycles. Each cycle terminates when the robot obtains the
goal location, encounters an impediment in its route, or
when the timer for each cycle runs out. Various obstacles,
such as people, static blocks, and walls, were randomly put
in this environment to evaluate the efficacy of the proposed
mobile robot navigation algorithm. The robot aims for static
and dynamic obstacles by maintaining a safe distance from
them and reaching the right spots in the least possible time
and space.

Fig. 5 depicts a realistic environment for route planning
for a mobile robot, with a workspace of 12x12m and a
minimum distance between blocks of 0.6m. The robot
begins at location (1, 1) for all tests and moves to the goal
(11, 11). Table 3 summarizes for 4 simulation case.

(a) Case 1

P-ISSN 1859-3585 E-ISSN 2615-9619 https://jst-haui.vn SCIENCE - TECHNOLOGY

Vol. 60 - No. 4 (Apr 2024) HaUI Journal of Science and Technology 25

(b) Case 2

(c) Case 3

(d) Case 4

Fig. 5. Depicts a realistic environment for route planning for a mobile robot

Table 1. Simulation results on ROS-Gazebo

No Distance (m) Run time(s)

Case 1 17.758 12,314

Case 2 18.416 14.637

Case 3 18.690 12,320

Case 4 18.420 14.640

In all 4 cases, simulation results show promising results
for the QL algorithm in orbiting planning for mobile robots,
especially regarding time. In addition, the simulation results
in Table 1 show that QL controllers ensure the mobile robot
plans the optimal path. The DQL's trajectory is improved
(shorter distance). At the same time, the computation time
to establish the optimal rotation and motion is much better.
In summary, the results demonstrate the superiority of the
QL algorithm in orbiting planning for mobile robots. Not
only does it excel in terms of efficiency and speed, but it also
guarantees optimal path planning for the mobile robot. The
enhancements observed in the trajectory of the DQL further
underscore the effectiveness of QL controllers in minimizing
distances travelled. These findings highlight the significant
computation time improvements for optimal rotation and
motion, solidifying the QL algorithm as a top choice for
mobile robot orbiting planning.

5. CONCLUSION
This work introduces the QL algorithm as a practical

approach for creating paths for mobile robots in
complicated and dynamic situations. The algorithm assists
the robot in selecting the most suitable action, expedites the
robot's learning process, determines the ideal trajectory,
and provides the optimal Q value for each pair. Act - Operate
within an intricate setting. The simulation results for robots
utilizing the QL algorithm have shown the effectiveness and
superiority of the proposed method in terms of (1) quickly
and safely producing optimal or near-optimal paths, (2)
being deterministic and taking only a few milliseconds to
calculate a satisfactory solution in terms of length and safety;
and (3) QL-based algorithms being non-deterministic and
struggling to find a suitable balance between convergence
speed and path length. The suggested QL performance has
shown remarkable improvement compared to the latest
relevant work. Finally, the proposed optimal path for mobile
robots was increase.

REFERENCES
[1]. Volos CK, Kyprianidis IM, Stouboulos I N, "A chaotic path planning

generator for autonomous mobile robots," Robots Auton Syst, 60: 651-656, 2012.

[2]. Chaari I, Koubaa A, Trigui S, et al., "SmartPATH: an efficient hybrid ACO-
GA algorithm for solving the global path planning problem of mobile robots," Int
J Adv Robot Syst, 11: 399-412, 2014.

[3]. MS Gharajeh, HB Jond, ''An intelligent approach for autonomous mobile
robot’s path planning based on adaptive neuro-fuzzy inference system,'' Ain
Shams Eng. J., 2021. DOI: 10.1016/j.asej.2021.05.005.

 CÔNG NGHỆ https://jst-haui.vn

 Tạp chí Khoa học và Công nghệ Trường Đại học Công nghiệp Hà Nội Tập 60 - Số 4 (4/2024) 26

KHOA HỌC P-ISSN 1859-3585 E-ISSN 2615-9619

[4]. C. Zhang, L. Zhou, Y. Li, Y. Fan, ''A dynamic path planning method for
social robots in the home environment,'' Electronics, 9, 7, 1173, 2020.

[5]. X. Yingqi, S. Wei, Z. Wen, L. Jingqiao, L. Qinhui, S. Han, ''A real-time'
dynamic path planning method combining artificial potential field method and
biased target RRT algorithm,'' J. Phys., Conf. Ser, 1905, 1, 2021, Art. no. 012015.

[6]. B. Yang, J. Yan, Z. Cai, Z. Ding, D. Li, Y. Cao, L. Guo, ''A novel heuristic
emergency path planning method based on vector grid map,'' ISPRS Int. J. Geo-Inf,
10, 6, 370, 2021.

[7]. S. Xiao, X. Tan, J. Wang, ''A simulated annealing algorithm and grid map-
based UAV coverage path planning method for 3D reconstruction,'' Electronics, 10,
7, 853, 2021.

[8]. T. Lin, ''A path planning method for mobile robot based on A and
antcolony algorithms,'' J. Innov. Soc. Sci. Res., 7, 1, 157-162, 2020.

[9]. Jianming Guo. Liang Liu, Qing Liu, Yongyu Qu, “An Improvement of D*
Algorithm for Mobile Robot Path Planning in Partial Unknown Environment,” in
2009 Second International Conference on Intelligent Computation Technology and
Automation. ISBN: 978-0-7695-3804-4, DOI: 10.1109/ICICTA.2009.561

[10]. Lai X., Wu D., Wu D., Li JH, Yu H., "Enhanced DWA algorithm for local
path planning of mobile robot," Industrial Robot, 50, 1, 186-194, 2023
https://doi.org/10.1108/IR-05-2022-0130

[11]. C. Zong, X. Han, D. Zhang, Y. Liu, W. Zhao, M. Sun, ''Research on local
path planning based on improved RRT algorithm,'' Proc. Inst. Mech. Eng, 235, 8,
2086-2100, 2021.

[12]. Tsai CC, Huang HC, Chan C K., "Parallel elite genetic algo rithm and its
application to global path planning for autonomous robot navigation," IEEE Trans
Ind Electron, 58: 4813-4821, 2011.

[13]. Saska M, Macas M, Preucil L, et al., "Robot path planning using particle
swarm optimization of Ferguson splines," in Proceedings of IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). New York:
IEEE Press, 833-839, 2006.

[14]. Raja P, Pugazhenthi S., "On-line path planning for mobile robots in
dynamic environments," Neural Netw World, 22: 67-83, 2012.

[15]. Chen X, Kong Y, Fang X, et al., "A fast two-stage ACO algorithm for
robotic path planning," Neural Computer Appl, 22: 313-319, 2013.

[16]. Purcaru C, Precup RE, Iercan D, et al., "Optimal robot path planning using
gravitational search algorithm," Int J Artif Intell, 10: 1-20, 2013.

[17]. Li P, Duan H B., "Path planning of unmanned aerial vehicle based on
improved gravitational search algorithm," Sci China Technol Sci, 2012, 55: 2712–
2719

[18]. Duan HB, Qiao P X., "Pigeon-inspired optimization: a new swarm
intelligence optimizer for air robot path planning," Int J Intell Comput Cybern, 7:
24-37, 2014.

[19]. Liu J., Wang Q., He C., Jaffrès-Runser K., Xu Y., Li Z., Xu Y., "QMR: Q-
learning based Multiobjective optimization Routing protocol for Flying Ad Hoc
Networks," Computer Communications, 2019.

[20]. Low ES, Ong P., Cheah KC., "Solving the optimal path planning of a
mobile robot using improved Qlearning," Robotics and Autonomous Systems, 115,
143-161, 2019.

[21]. Wang YH, Li THS, Lin CJ, "Backward Q-learning: The combination of
Sarsa algorithm and Qlearning," Engineering Applications of Artificial Intelligence,
26(9), 2184-2193, 2013.

[22]. Das PK, Mandhata SC, Behera HS, Patro SN, "An improved Q-learning
algorithm for pathplanning of a mobile robot," International Journal of Computer
Applications, 51(9), 2012.

THÔNG TIN TÁC GIẢ

Hồ Mạnh Tiến, Võ Thanh Hà
Khoa Điện - Điện tử, Trường Đại học Giao thông Vận tải

