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OPTIMAL NAVIGATION PLANNING FOR MOBILE ROBOTS
USING REINFORCEMENT LEARNING (RL) ALGORITHM

TOI UU DIEU HUGNG CHO ROBOT TU HANH SU' DUNG THUAT TOAN HOC TANG CUONG
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ABSTRACT

The QL controller solved the path optimization problems for mobile robots. The QL algorithm
predicts the mobile robot's course by learning from prior observations of the surroundings. On the
other hand, the QL method calculates the states' Q values to offer massive deals to the Q table. The
QL algorithm had optimal navigation planning for mobile robots in a dynamic environment. The
mobile robot communicated with the control script by the robot operating system (ROS). The
mobile robot is code-programmed using Python in the ROS operating system and the QL controller
on Gazebo software. This QL controller is improved for the computation time, convergence time,
planning trajectories accuracy, and avoidance of obstacles. Therefore, the QL controller solved the
path optimization problems for mobile robots. The QL controller's efficiency was evident in its
ability to adjust to changing environments swiftly, ensuring seamless navigation without
compromising safety. By leveraging the power of machine learning and advanced algorithms, the
mobile robot could adapt its trajectory in real-time, responding to obstacles and dynamic
conditions with precision. This groundbreaking approach optimized path planning and enhanced
the overall performance of mobile robots, paving the way for a new era of intelligent and
autonomous robotic systems.
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TOM TAT

Thudt toan QL dy dodn duong di cla robot di dong bang céch hoc héi tir nhiing quan sat trudc
d6 vé moi truong xung quanh. Mat khac, phuang phap QL tinh toan cac gia tri Q cla cac trang théi
dé dua ra cac tinh toan I6n cho bang ma tran Q. Thuat toan QL 6 k€ hoach diéu hudng t6i uu cho
robot di dong trong méi trudng nang dong. Robot di dong giao tiép véi tap Iénh diéu khién bang
hé diéu hanh robot (ROS). Robot di dong dugc lap trinh mé bang ngon ngit Python trén hé diéu
hanh ROS két hgp vi b diéu khién QL trén phan mém Gazebo. B9 diéu khién QL nay dugc cdi thién
vé thoi gian tinh toan, thoi gian hi tu, lap ké hoach quy dao chinh xac va tranh chuéng ngai vét.
Do d6, b diéu khién QL da gidi quyét dugc van dé t6i uu héa dudng dan cho robot di dong. Hiéu
qua cta b diéu khién QL thé hién rd & kha nang diéu chinh nhanh chéng theo méi trutng thay doi,
dam bao diéu hudng lién mach ma khdng anh huéng dén an toan. Bang cach tan dung stic manh
clia may hoc va céc thuat toan tién tién, robot di dong c6 thé diéu chinh quj dao cdia né trong thai
gian thuc, phan (ing chinh xac vdi cac chudng ngai vat va diéu kién dong. Cach tiép can dgt pha nay
da t6i uu hoa viéc lap ké hoach dudng di va nang cao hiéu sudt tong thé cda robot di dong, mé
duang cho ky nguyén mdi cta hé thong ré bot tu hanh théng minh.

Tirkhoa: Robot di dong, RL, ROS, QL.
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1.INTRODUCTION

Mobile robots are becoming a crucial
element of contemporary society's progress. It
does dangerous tasks that are challenging for
people, including search and rescue
operations, aiding in epidemic areas, and
investigating remote worlds. Therefore, a
crucial aspect of designing mobile robots is
strategizing the robot's path [1, 2]. The
trajectory planning will focus on reaching the
destination quickly, with little energy
consumption, and avoiding obstacles. Mobile
robots currently include global route planning,
local path planning, static path planning, and
dynamic path planning [4]. Researchers have
recently published more trajectory-planning
studies for mobile robots aimed at avoiding
obstacles in the operating environment. The
system includes linear, nonlinear, and
intelligent algorithms. The mobile robots
described in reference [5] use an Artificial
Potential Field (APF) algorithm for motion
planning. The checkerboard strategy was used
in a different study to find the best mobile route
by repeatedly running the simulation software.
Other notable pathfinding methods for static
obstacle avoidance include the A* algorithm, D
algorithm, random tree algorithm (RRT), and
optimization particle swarm (PSO). Based on
the research results, mobile robots are limited
to functioning in a static environment. The
mobile robot adjusted its speed and path to
avoid obstacles. Orbital navigation planning for
mobile robots is effective in dynamic scenarios
[13]. Therefore, artificial intelligence techniques
like the GA-Fuzzy approach [14] and ANFIS [15]
have been used. As stated in reference,
scientists have extensively used the RL
algorithm in entertainment games and
information technologies [16]. Several scholars
have used the algorithm's primary feature,
simple controller design, to strategize orbital
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navigation for mobile robots [17-19]. Conversely, the RL
method improves the route somewhat and extends the time
needed for convergence computation. The QL algorithm
forecasts the trajectory of a mobile robot by analyzing
previous observations of its environment, as shown by the
research [20, 21]. Q-Learning (QL) enhances computational
efficiency and convergence. The QL technique computes
the Q values of states to generate large deals in the Q table.
Planning the path for the mobile robot using the QL
algorithm took a lengthy time due to the need to access all
action-state pairs in complicated and dynamic scenarios.
The QL method provided excellent navigation planning for
mobile robots in a dynamic environment.

This paper will be broken into four sections. The
introduction discusses the route planning control issues
faced by the mobile robot. Section two details the
mathematical modeling of an operating system designed
for a mobile robot. Section three will outline the process of
creating the optimal path for mobile robots via the QL
algorithm. Part four concludes by evaluating the solution's
effectiveness for the QL algorithm via simulation.

2. MATHEMETICAL MODELING OF OPERATING FOR A
MOBILE ROBOT

2.1. Obstacle modeling in mobile robot operating
environment
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Fig. 1. Obstacle estimation for route planning

The obstacle modelling is built on a rectangular box. It is
considered the optimal geometry that allows easy
estimation of any obstacle shape among static and dynamic
path optimization techniques that collect obstacle
estimates. Obstacles using cubes, as shown in Fig. 1(a). Using
this geometry to plan the robot in 2D, we can replace blocks
using this geometry while avoiding 3D obstacles. A realistic
scene with 3D blocks (chairs, tables, etc.) is depicted in Fig.
1(b). The binary map of the modelled environment is shown
in Fig. 1(c).

2.2. Mathematical model for a mobile robot

The mobile robot will move from the starting point start
(x5, ¥s) to the destination point target (xr, yr), the purpose of
the robot path planning is to find the optimal path from the
Start point to the Target point, this path is connected by n
nodes (N;, i =1...n) and (n-1) each segment is 2 consecutive
nodes connected to each other. Assume the robot moves in
an environment with m known obstacles as shown in Fig.1.
Each obstacle is modelled surrounded by a rectangle with
four vertices pi(xi, y1)...palxs, y4) and four edges obs_segy
(te{1...4},j € {1...m}). Where p; is the bottom left corner of
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the rectangle. Similar to obstacles in the environment, the
mobile robot is also estimated by a rectangle of four point;
their coordinates change according to the robot's current
position. The mathematical equation of each segment
defined by the two points (pi, pi) of a rectangle enclosing an
obstacle is given as the following Eq. (1):

Yi =Y«
y-y, = (x—x,)
seg(p,, p,) = X X, — X, K (1
Min(x,,x, ) < x <Max(x,,x, )

The following notations describe indices and parameters
used in the mathematical model: n: is the number of nodes
on the trajectory created from the starting point to the
destination; m: is the number of obstacles in the
environment;i (i € {1...n}): fragment index generated by the
node iandi+ 1;j(j € {1...m}):index of the j* obstacle in the
navigation environment; k, | (k, | € {1...4}): indices of the
point that defines an obstacle; r (r € {1...4}): index of the
segment r from the rectangle approximating the mobile
robot; t (t € {1...4}): index of the segment t that defines the
rectangle of an obstacle; Ni:i"" node of the path; obs; (j €
{1...m}) : j*" obstacle; path_segy (N;, Nis1)(i € {1...n-1}) : it
segment of the path defined by two nodes (N Ni.);
obs_seg;; (p, p)k, | € {1...4) j(j € {1...m}) : I'" segment of j®
obstacle defined by two pomts (Pw p|); CurrentPos: current
location of the robot; Rob_seg: (px, p)(r, k, | € {1...4}): rth
segment of the rectangle approximating the robot.

The mathematical model's decision variables are
computed as follows:

1ifHR,P2|{R,R} e(path_seg) A {P,P} e(obs_seg,)
Bm. = Vi(je {1 m} ,VA(t 6{1 4} , Vi 6{1 n} 2)

0 Otherwise

1if3R,P, (PR} e(path_seg) A{P,R,} €(obs_seg,)
Am. = Vj(j 6{1 m} LV t(t 6{1 4} (3)

0 Otherwise

The objective function is to find the shortest path is
written according to the Eq. (4)

Minimize(z::4\/(xi+1 =% +(y,, — Y, Vil ...n—1}) (4)
Eg. (5) requires each node to be unique:

(Xi = X)V (Y, #Y), Vie{l.n-1} (5)

i+1

Path segments do not overlap in the environment by Eq.

(6).
Yo > B Vie{l.n) te{l.4},je{1..m} (6)

The way nodes for the robot to overcome obstacles are
calculated by Eq. (7).

A nte{l.4) je{1..m} (7)

rtj’
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All variables A and B must be binary to satisfy
requirement Eq. (8).

B., e{O,1},Ar’t’j €{0,1},vi={l..n},r,t={1..4},j={1..m} (8)

3. Q-LEARNINGS ALGORITHMS IN PATH PLANNING FOR
MOBILE ROBOTS

The Q-learning (QL) algorithm uses the concept of
reward and punishment is created the environment. First,
state and action variables are developed and discretized
according to the path-planning job. The reinforcement
value is then stored in a Q-value function matrix, and a
reward function is built to meet the conditions of obstacle
avoidance and the shortest route. To overcome the
exploration and exploitation balance issue and increase
convergence speed, the -balancing methods and action
selection algorithm are devised to improve the QL learning
process. Following QL training, the optimum pairings of
state and action are acquired, as are the optimal control
rules, which are then utilized to execute local route
planning. Steering rules are included to avoid the
incomplete visiting issue for the pairings of state and action
to increase route planning efficiency. Finally, the developed
procedure was tested. The findings indicate that, even in a
complex environment, the robot can design an optimum or
suboptimal course while avoiding obstacles.

Fig. 2 illustrates how a mobile robot selects an action
based on the appropriate policy, executes that action, and
receives status (s) and reward (r) from the navigation
environment. A state contains the robot's current position in
its workspace while optimizing paths, while an action is a
movement the robot makes to transition from one state to
another.

Agent

State S| | Reward r Keten A

Environment

Fig. 2. Q-learning algorithm

The Q value is built for the robot to decide to earn the
greatest reward. It is calculated as follows:

Qs,,a,)=0Q(s,,a,)+ G|:I’(St ,a,)+ yr’ng\xQ(sH1 ,a)—Qs,,a, )J 9)

Where: a represents the learning rate, y is the discount

factor, s,maxQ(s,,,,a) signifies the maximum Q-valua
acA

among all feasible actions in the new state a;, and denotes
the immediate reward/penalty earned by the agent after
executing a move at the state s+

Based on Eq. (9) a state matrix - which acts like a lookup
table. From there, for each state of the robot, find the action
with the most significant Q value (Fig. 3).
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Fig.3. Table of Q parameters according to the state-action matrix

Reinforcement learning is a random process so the Q
values will differ before and after the action. It is called a
temporary difference.

TD(a,s) =r(s,,a,) + ymax Q(s,,;,a)—Qls,,a,) (10)

Thus, the matrix needs to update the weights based on
the Eq. (10):

Q,(s;,a,)=Q,(s.,a,)+aTD(s,,a,) (11)

where: a is the arithmetic coefficient. Through the times

the robot performs actions; Q(s, aJ) it will gradually
converge.

A programming program for the Q-learning algorithm in
robot pathfinding is written as follows:

Algorithm 1: Classical Q-Learning algorithm begin
Initialization:

Q(sy, a¢) — {0}, (states and m actions)
for (each episode):
(1) set s; < a random state from the states set s;
while (s; = Goal stage)

(2) Choose a:in s¢ by using an adequate policy (€ -greedy,
etc.);

)
(3) Perform action ay, and receive reward/penalty and sg.1;
(4) Update Q(sy, a¢) using Eq (9);.

St <— St+1
end-while
end-for
end

The size of the Q table grows exponentially following the
number of states and actions in an environment with
conditions.

In this situation, the process becomes computationally
expensive and requires much memory to hold the Q values.
Imagine a game where each state has 1000 actions. A table
with a million cells will be needed. Given the vast amount of
computational time, one of the main problems when using
the QL algorithm in path optimization is that accessing all
the Action-State pairs during the mining process is
complexly generated, which affects the orbital
convergence.
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4. SIMULATION RESULTS

In this work, the control robot system built a scenario in
ROS-Gazebo similar to a simulated factory to bridge the gap
between the simulated environment and the natural world.
Various obstacles are constructed to test the suggested QL
navigation algorithm in this environment. Walls, static
blocks, movable humans, targets, and mobile robots were all
part of the domain. The mobile robot must approach the
destination while avoiding static and dynamicimpediments,
such as those shown in Fig. 4.

Fig. 4. Table of Q parameters according to the state-action matrix

A robot's training procedure might include numerous
cycles. Each cycle terminates when the robot obtains the
goal location, encounters an impediment in its route, or
when the timer for each cycle runs out. Various obstacles,
such as people, static blocks, and walls, were randomly put
in this environment to evaluate the efficacy of the proposed
mobile robot navigation algorithm. The robot aims for static
and dynamic obstacles by maintaining a safe distance from
them and reaching the right spots in the least possible time
and space.

Fig. 5 depicts a realistic environment for route planning
for a mobile robot, with a workspace of 12x12m and a
minimum distance between blocks of 0.6m. The robot
begins at location (1, 1) for all tests and moves to the goal
(11, 11). Table 3 summarizes for 4 simulation case.

X(m)

N WA N v

-

Y(m)
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Table 1. Simulation results on ROS-Gazebo

10 No Distance (m) Run time(s)
9 Case 1 17.758 12,314
8 (ase 2 18.416 14.637
7 (ase3 18.690 12,320
6 (ase 4 18.420 14.640

In all 4 cases, simulation results show promising results
for the QL algorithm in orbiting planning for mobile robots,
especially regarding time. In addition, the simulation results
in Table 1 show that QL controllers ensure the mobile robot
plans the optimal path. The DQL's trajectory is improved
(shorter distance). At the same time, the computation time
Szm Y(m) to establish the optimal rotation and motion is much better.

In summary, the results demonstrate the superiority of the
QL algorithm in orbiting planning for mobile robots. Not
only does it excel in terms of efficiency and speed, but it also
guarantees optimal path planning for the mobile robot. The
enhancements observed in the trajectory of the DQL further
underscore the effectiveness of QL controllers in minimizing
distances travelled. These findings highlight the significant
computation time improvements for optimal rotation and
motion, solidifying the QL algorithm as a top choice for
mobile robot orbiting planning.

5. CONCLUSION

This work introduces the QL algorithm as a practical
approach for creating paths for mobile robots in
complicated and dynamic situations. The algorithm assists
the robot in selecting the most suitable action, expedites the
robot's learning process, determines the ideal trajectory,
and provides the optimal Q value for each pair. Act - Operate

Y(m) within an intricate setting. The simulation results for robots
utilizing the QL algorithm have shown the effectiveness and
superiority of the proposed method in terms of (1) quickly
and safely producing optimal or near-optimal paths, (2)
being deterministic and taking only a few milliseconds to

X(m) calculate a satisfactory solution in terms of length and safety;
and (3) QL-based algorithms being non-deterministic and
struggling to find a suitable balance between convergence
speed and path length. The suggested QL performance has
shown remarkable improvement compared to the latest
relevant work. Finally, the proposed optimal path for mobile
robots was increase.
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THONG TIN TAC GIA
Ho Manh Tién, V6 Thanh Ha
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