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BUCKLING ANALYSIS OF FGM PLATES
RESTING ON VARIABLE STIFFNESS ELASTIC FOUNDATIONS
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ABSTRACT

This paper used the finite element technique to investigate the static
buckling behavior of functionally graded material (FGM) plates supported by an
elastic base with varying stiffness. The finite element method is formulated using
Mindlin's first-order shear deformation theory. FGM plates consist of a
combination of ceramic and metal components, with the distribution of these
materials following an exponential law. Specifically, the top side of the plate has
a higher proportion of ceramic, while the bottom side contains a higher
proportion of metal. The dependability of the calculation theory is assessed by a
comparison with previously published publications. This article examines the
impact of some variables on the static buckling response of FGM plates, including
material distribution, elastic foundation parameters, and boundary conditions.
The calculation results indicate that the value of the elastic foundation has a
significant impact. The critical buckling load and buckling mode shapes of the FGM
plate will vary based on the volume distribution of its component materials.

Keywords: Finite element method, static buckling, Mindlin, plate, elastic
foundation.

TOMTAT

Bai bdo st dung phuang phéap phén ti hitu han d€ nghién ctu 6n dinh tinh
clia tdm c6 co tinh bién déi (FGM) tua trén nén dan héi c6 do ciing bién déi. Thuat
todn phan t& hitu han dugc thiét Iap dua trén Iy thuyét bién dang cat bac nhat clia
Mindlin. Tam FGM lam tir gm va kim loai vdi su phan b ty I& thé tich cac loai vat
liéu tuan theo quy luat ham so m, trong d6 mat trén cla tam giau gom va mat
dudi ctia gom giau kim loai. Ly thuyét tinh todn dugc kiém chiing dd tin cdy bang
viéc 5o sanh véi cac cong trinh da cong bo. Trén ca s& d6, bai béo tién hanh khao
sat dnh hudng clla mdt s6 yéu t6 vé sy phan bé vat liéu, tham so nén dan hai, diéu
kién bién dén dap tng 6n dinh cda tim FGM. Cac két qua tinh toan cho thdy tily
thudc vao gid tri cda nén dan hoi, tily thudc vao su phan bé thé tich cla cic vat
liéu thanh phan ma dap (ing tai t6i han mat 6n dinh cho tdm ciing nhu cac dang
mat on dinh cia tam FGM ciing s& khac nhau.

Tir khéa: Phuong phdp phan tit hitu han, 6n dinh tinh, Mindlin, tdm, nén dan
héi.
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1. INTRODUCTION

The recent development of functionally graded
materials (FGM) has garnered significant interest from
materials scientists and mechanists worldwide. This is due to
its ability to endure substantial loads and exhibit superior
resistance to friction and wear compared to conventional
materials. Simultaneously, there is no discernible division
between the material layers, despite being composed of two
distinct materials with disparate mechanical characteristics.
FGM functional modification material is required in crucial
sectors including construction, particularly in nuclear
reactor construction, shipbuilding, and the fabrication of
high-temperature-resistant engines. Consequently, several
scientists both domestically and internationally have
extensively examined the mechanical properties of
structures composed of Functionally Graded Materials
(FGM), as shown by several notable studies [1-5]. Dat and his
research group [1] used the third-order shear deformation
theory to determine the precise vibration response of FGM
panels with reinforced ribs using the finite element
approach. Thom and his colleagues [2] used finite simulation
techniques to investigate the thermal stability response of
FGM panels using phase-field theory. Vinh and his
colleagues used the novel shear deformation theory to
determine the inherent vibration frequency of rectangular
FGM panels. Quang et al. [4] once again used the precise
solution to determine the static bending behavior of shells
that had varying mechanical characteristics.

When structures are supported by an additional
component, it is feasible to simulate the structure resting on
a flexible foundation. However, the uniformity of the
foundation's hardness is subject to variation according to
certain standards. This scenario may be replicated by
modeling a support plate on an elastic basis with varying
stiffness characteristics. The calculation and investigation of
the mechanical behavior of FGM plate structures on elastic
foundations with varying stiffness parameters has
significant scientific and practical importance. It has both
academic relevance and practical applications in the design
and use of FGM structures. Hence, this paper examines the
static stability characteristics of panels made of functionally
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graded materials (FGM) placed on an elastic basis that has
varying stiffness. This work presents significant computer
simulations and numerical findings via the use of the finite
element approach.

2. PROBLEM MODEL AND SOLUTION SETTING

This article calculates an FGM plate resting on an elastic
foundation with variable stiffness as shown in Figure 1. The
plate is placed in the Oxyz plane, the geometric parameters
of the plate are a, b and h. The stiffness parameter k,, of the
elastic foundation varies with x and y coordinates.
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Figure 1. The FGM plate model rests on an elastic foundation with variable
stiffness
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Figure 2. The material is distributed along the thickness of the plate
FGM plates are made of two components: metal and
ceramic, with the material volume ratio varying according to
the thickness of the panel. The distribution of volume ratio
of ceramic (V) and volume ratio of metal (V.,) according to
the formula.
Vin+Ve=1 (M

where Vv, :[%Jrﬁj , Np is the exponential index of the

material volume.

The mechanical properties (Elastic modulus E, Poisson's
ratio v) depend on the thickness as follows:

E=E, +(E.—E, )V,
v=v, +(v.—v,)V.

c

(2)

Figures 3 and 4 depict the relationship between the
volume ratio of ceramic and metal and the material volume
exponent, while also considering the variation in plate
thickness, z. The ratio of ceramic and metal components
exhibits a smooth and continuous variation from one side of
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the plate to the other, with the ceramic-rich plate having a
higher ratio on the upper side and the metal-rich plate
having a higher ratio on the lower side. Hence, the
mechanical characteristics of the material undergo a
constant change throughout the FGM plate.
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Figure 4. Distribution of metal material ratio Vy, of FGM plates
The article uses Mindlin's first-order shear deformation
theory, according to which the displacement at any point of
the FGM plate has the following expression:
u,(x,y,z)=u, +zQ,
v, (X,y,2)=v, + 20, (3)
w,(X,y,z)=w,
where Uy, Vo, and w are the linear displacements on the
neutral surface of the plate according to the coordinate axes

Ox, Oy and Oz. ¢, and ¢, are the rotation angles of the cross-
section of the plate.

Differentiating the displacement components, we obtain
the deformation components of the plate as follows:

{B = BO + ZBZ
Y. =9,

where

(4)

Vol. 59 - No. 6B (Nov 2023) e Journal of SCIENCE & TECHNOLOGY | 61



SCIENCE - TECHNOLOGY

P-ISSN 1859-3585 | E-ISSN 2615-9619

T

Bo = {BoxBoy Bosy | iB.={BuBry Bay |
lI’s() :{lplelpyz }T ' Box :%;

ov ov, Ou
BOy :_0; BOxy :_0+_0;
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Bzx - (px’ Bzy __y’
OX oy
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Y, = E +¢,;

The relationship between stress and strain is as follows:

1T v 0 B,

E
v (=10 v 1 0 B, r=D,B
Txy 00 (1-\,) BX)’ (6)
2

sz _ Ei 10 Ll)xz _
{rﬂ}‘zmw)L 1Hwyz}‘°5“’

After integrating over the plate thickness, we obtain the
normal force, moment and shear force components of the
plate as follows:

Nx h/2 Bx

N, t= [ D,{B, fdz=A,B,+B,B,

ny -h/2 Bxy

Mx h/2 Bx

M, t= [ D,{B, (zdz=B,B,+D.B, (7)
Mxy ~h/2 Bxy

h/2
{sz } _ E DS {lpxz }dz — Aslpso
Qyz 6 —h/2 lpyz

where the coefficient matrices are determined as follows:

h/2 BX
{A,B,D,}= [ D,{B, H{127'}dz
—-h/2 Bxy (8)

h/2
A =2 [ D, Vel gy
6 Ll)yz

-h/2

Divide the plate into finite elements, each element is
triangular, then the displacement at any point of the
element will be interpolated through nodal displacement
and functions as follows:

{UU’VO’W’(px’(py} = iNi {uoi’voi’wi’(pxi’(pyi} =Nq, 9)
=1

where N; are shape functions, g is the element node
displacement vector (including 15 components).
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Thus, the strain energy of the plate element has the
following form:

U, :%\;[(BT0+¢TT)dV (10)

By evaluating the strain and stress components using the
shape function and element node displacement vector, we
can get the finite formula for the strain energy of the plate
element as follows:

B/A B, +B'BB,+B]BB
Ue:quJ 1To1 1Tz2 211ds q.
2 " |{(+B,D,B,+BAB
e z s s (‘I‘I)
1
=—q'K
qu eqe

where B;, B, B, are functional differential matrices.

The energy exerted by the elastic foundation on the
plate element has the following form:

o el
o (2] 42

T
=—q'K
2qe feqe

where k, and ks are two coefficients of the elastic
foundation as shown in Figure 1, ¢, is a parameter showing
the change of stiffness according to x and y coordinates.
The energy due to external compressive force acting on
the plate element has the following form:
1 o’w 1
U,==||P,— |[dS=—qlK
n 2;"( n axz J qu Geqe (1 3)
To establish the balance equation for the plate, the
article uses the possible work principle as follows:
U, -6U, —8U_ =0

]Sk k)R Tk fa= o

e

(14)

Solving equation (14) obtains the critical buckling load P,
and the corresponding buckling mode shapes.

3. NUMERICAL RESULTS AND DISCUSSIONS
3.1. Example of accuracy verification

The FGM plate is subjected to compression along two
opposing sides. The plate is composed of Al,0; (ceramic)
and Al (metal). The width of the plate is denoted as a and the
length as b, with a being equal to b. The thickness of the
plate, denoted as h, is equal to one twentieth of a. The
ceramics have an elastic modulus of 380GPa and a Poisson's
ratio of 0.3, whereas the metals have an elastic modulus of
70GPa. The plate is positioned on a two-coefficient elastic
basis characterized by parameters k, :kw%, k, :ksg,
E, h’

h =
where p 12(1_\};)

. The comparison parameter represents
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the crucial buckling load of the FGM plate, which is
determined using the formula ky = P, a%/Enh® Table 1
presents a comparison between the critical buckling load
determined using the theoretical approach outlined in the
article and the findings reported in literature [6]. The
calculations were performed for various elastic foundation
values, and the obtained data show a high degree of
similarity. These findings exhibit minimal variances, so
confirming the dependability of the calculation theory.

[10,0] 8.533 5.963 5.645 5.472 4.751
[10,2] 8.937 6.366 6.049 5.875 5.155
[50,5] 9.781 7.210 6.893 6.720 5.999
[10%,10] 11.089 8.518 8.200 8.027 7.306
[10°,10% 26.921 23.017 | 22529 | 22.262 21.152

Table 3. Critical buckling load N, of the SSSS FGM plate depend on [RW, RS } ,

four edges are subjected to compression, a/h=20

Table 1. Comparison results of the critical buckling load ky of FGM plates —
resting on an elastic foundation, a/h=20 [kw /K, J n,=0 n=1 [ n=15| n,=2 | n,=10
(k, k,) k=0 | k=05 | k=1 k=2 [0,0] 4.236 2951 | 2792 | 2706 | 2345
(10210) [6] 22112 15.326 12426 10.296 [10,0] 4.266 2.981 2.822 2.736 2375
' Thiswork | 22.368 15318 12441 10333 [10,2] 4.468 3.183 3.024 2.937 2.577
(10°109) [6] 43387 33.049 28610 25325 [50,5] 4.890 3.605 3.446 3.360 2.999
' This work 44367 33.365 28.875 25.584 [102’10] 5.544 4.259 4.100 4.013 3.653
3.2. Parameter study [10°,107] 17.296 15.998 15.836 15.748 15.376

Based on the calculation theory presented above, this
section presents the results of numerical calculations to clarify
the influence of several material and geometric factors on the
static stability response of FGM panels resting on an elastic
foundation with variable stiffness. FGM panels have a square
shape with the length and width of panels a and b
respectively, and panel thickness h. The material's mechanical
properties are Ec = 151GPa, En= 70GPa, v. = v, = 0.3. If the
plate edge has a single support connection, the symbol is S, if
the plate edge has a clamp connection, the symbol is C. If the
plate edge is free, the symbol is F.

The critical buckling load of the plate is calculated
according to the dimensionless formula as follows

NCb=12Pna2(1—v2m)/EmF3, where h= a/10. Two
dimensionless parameters of the elastic foundation
. at - a’ E h
k, =k,—, k,=k,—,Vv6iD =—" .

D, D, 12(1-v2)

- Effect of elastic foundation stiffness: consider the case
of elastic foundation with parameter c,, = 0.5, changing the
stiffness of the elastic foundation. The results of calculating
the critical buckling load of FGM panels are shown in Tables
2, 3, one can see comments as follows: When increasing the
stiffness of the elastic foundation, the plate becomes stiffer,
so the ultimate load also increases, meaning the plate is
better able to withstand compression. At the same time,
when increasing the value of n, the proportion of metal
components in the plate increases, the plate becomes
softer. Therefore, the critical buckling load of the plate is
reduced.

Table 2. (ritical buckling load N, of the SSSS FGM plate depend on [RW, RS J ,

compression along the Ox axis, a/h=20

L

[0,0] 8.473
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- Influence of boundary conditions: This computation is
applicable to six distinct boundary condition scenarios. The
critical buckling loads for each scenario are shown in Tables
4, 5. These findings demonstrate that altering the boundary
conditions directly impacts the critical load of the FGM plate.
This is due to the influence of the boundary conditions on
the structural stiffness. The plate subjected to CFFF
boundary condition exhibits the lowest critical buckling
stress, whereas the plate subjected to CCCC boundary
condition demonstrates the greatest critical buckling load.

Table 4. Critical buckling load N, of the SSSS FGM plate depend on boundary
conditions, compression along the Ox axis, [IZW , RS J =1{100,10],a/h=20

Bc n,= n,= n=15| n= n,=10
SSSS 11.089 8.518 8.200 8.027 7.306
SCSC 17.041 12325 11.732 11.405 10.050
SFSF 3.655 3.037 2.961 2.920 2747
CFFF 2.276 2.062 2.032 2.016 1.945
CFCF 8.557 6.366 6.089 5.935 5.301
(ccc 22.513 16.337 15.557 15.126 13.342

Table 5. Critical buckling load N, of the SSSS FGM plate depend on boundary
conditions, four edges are subjected to compression, [RW , IZX ] =[100,10],a/h =20

Bc n,=0 n=1 | np=15| n,=2 | n,=10
SSSS 5.544 4.259 4.100 4.013 3.653
SCSC 9.197 6.796 6.496 6.332 5.650
SFSF 3.545 2.908 2.825 2.779 2.725
CFFF 2.220 1.978 1.946 1.927 1.849
CFCF 6.735 5.059 4.848 4.732 4.251
(ccc 12.093 8.806 8.395 8.169 7.231

The first four buckling mode forms of the FGM plate with
two boundary conditions and parameters ¢, =0 and ¢, =0.5
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are shown in Figures 5 - 8. These forms illustrate that
boundary circumstances also impact the buckling modes of
the plate. Furthermore, the buckling mode forms are also
influenced by the variation in the value of the foundation c,,
parameter.

(a) Mode 1 (b) Mode 2

(c) Mode 3 d) Mode 4
Figure 5. The first four buckling mode shapes of the FGM plate corresponding
to the SSSS case, [ﬁw, k =[10%100], c,=0

(b) Mode 2

(a) Mode 1

(¢) Mode 3

(d) Mode 4
Figure 6. The first four buckling mode shapes of the FGM plate corresponding
tothe SSSS case, [ k,, k, |=[10%100],¢, =05
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(a) Mode 1 b) Mode 2
(c) Mode 3 (d) Mode 4
Figure 7. The f rst four buckling mode shapes of the FGM plate corresponding
=[10%100], ¢c,=0

to the SCSC case,

(a) Mode 1 (b) Mode 2

(c) Mode 3

(d) Mode 4
Figure 8. The first four buckling mode shapes of the FGM plate corresponding
to the SCSC case, [Rw, ﬁs ] =[10%100], c,=0.5

4. CONCLUSION

This article introduces a finite simulation approach for
analyzing the static buckling behavior of functionally
graded material (FGM) plates supported by an elastic base
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with varying stiffness values. The plate's expressions and
equilibrium equations are derived using Mindlin's first-order
shear deformation theory. The assumption is made that the
elastic basis has varying stiffness characteristics throughout
the plane of the plate. In this work, a triangular plate element
was used to solve the buckling equation of the plate. The
paper also examined the impact of several parameters, such
as materials, boundary conditions, and elastic basis, on the
buckling behavior of this structure. This publication serves
as a significant reference for the practical design and
production of FGM plate structures.
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