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ABSTRACT 
This paper used the finite element technique to investigate the static 

buckling behavior of functionally graded material (FGM) plates supported by an 
elastic base with varying stiffness. The finite element method is formulated using 
Mindlin's first-order shear deformation theory. FGM plates consist of a 
combination of ceramic and metal components, with the distribution of these 
materials following an exponential law. Specifically, the top side of the plate has 
a higher proportion of ceramic, while the bottom side contains a higher 
proportion of metal. The dependability of the calculation theory is assessed by a 
comparison with previously published publications. This article examines the 
impact of some variables on the static buckling response of FGM plates, including 
material distribution, elastic foundation parameters, and boundary conditions. 
The calculation results indicate that the value of the elastic foundation has a 
significant impact. The critical buckling load and buckling mode shapes of the FGM 
plate will vary based on the volume distribution of its component materials. 

Keywords: Finite element method, static buckling, Mindlin, plate, elastic 
foundation. 

TÓM TẮT 
Bài báo sử dụng phương pháp phần tử hữu hạn để nghiên cứu ổn định tĩnh 

của tấm có cơ tính biến đổi (FGM) tựa trên nền đàn hồi có độ cứng biến đổi. Thuật 
toán phần tử hữu hạn được thiết lập dựa trên lý thuyết biến dạng cắt bậc nhất của 
Mindlin. Tấm FGM làm từ gốm và kim loại với sự phân bố tỷ lệ thể tích các loại vật 
liệu tuân theo quy luật hàm số mũ, trong đó mặt trên của tấm giàu gốm và mặt 
dưới của gốm giàu kim loại. Lý thuyết tính toán được kiểm chứng độ tin cậy bằng 
việc so sánh với các công trình đã công bố. Trên cơ sở đó, bài báo tiến hành khảo 
sát ảnh hưởng của một số yếu tố về sự phân bố vật liệu, tham số nền đàn hồi, điều 
kiện biên đến đáp ứng ổn định của tấm FGM. Các kết quả tính toán cho thấy tùy 
thuộc vào giá trị của nền đàn hồi, tùy thuộc vào sự phân bố thể tích của các vật 
liệu thành phần mà đáp ứng tải tới hạn mất ổn định cho tấm cũng như các dạng 
mất ổn định của tấm FGM cũng sẽ khác nhau. 

Từ khóa: Phương pháp phần tử hữu hạn, ổn định tĩnh, Mindlin, tấm, nền đàn 
hồi. 
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1. INTRODUCTION 
The recent development of functionally graded 

materials (FGM) has garnered significant interest from 
materials scientists and mechanists worldwide. This is due to 
its ability to endure substantial loads and exhibit superior 
resistance to friction and wear compared to conventional 
materials. Simultaneously, there is no discernible division 
between the material layers, despite being composed of two 
distinct materials with disparate mechanical characteristics. 
FGM functional modification material is required in crucial 
sectors including construction, particularly in nuclear 
reactor construction, shipbuilding, and the fabrication of 
high-temperature-resistant engines. Consequently, several 
scientists both domestically and internationally have 
extensively examined the mechanical properties of 
structures composed of Functionally Graded Materials 
(FGM), as shown by several notable studies [1-5]. Dat and his 
research group [1] used the third-order shear deformation 
theory to determine the precise vibration response of FGM 
panels with reinforced ribs using the finite element 
approach. Thom and his colleagues [2] used finite simulation 
techniques to investigate the thermal stability response of 
FGM panels using phase-field theory. Vinh and his 
colleagues used the novel shear deformation theory to 
determine the inherent vibration frequency of rectangular 
FGM panels. Quang et al. [4] once again used the precise 
solution to determine the static bending behavior of shells 
that had varying mechanical characteristics. 

When structures are supported by an additional 
component, it is feasible to simulate the structure resting on 
a flexible foundation. However, the uniformity of the 
foundation's hardness is subject to variation according to 
certain standards. This scenario may be replicated by 
modeling a support plate on an elastic basis with varying 
stiffness characteristics. The calculation and investigation of 
the mechanical behavior of FGM plate structures on elastic 
foundations with varying stiffness parameters has 
significant scientific and practical importance. It has both 
academic relevance and practical applications in the design 
and use of FGM structures. Hence, this paper examines the 
static stability characteristics of panels made of functionally 
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graded materials (FGM) placed on an elastic basis that has 
varying stiffness. This work presents significant computer 
simulations and numerical findings via the use of the finite 
element approach. 

2. PROBLEM MODEL AND SOLUTION SETTING 
This article calculates an FGM plate resting on an elastic 

foundation with variable stiffness as shown in Figure 1. The 
plate is placed in the Oxyz plane, the geometric parameters 
of the plate are a, b and h. The stiffness parameter kw of the 
elastic foundation varies with x and y coordinates. 

 
Figure 1. The FGM plate model rests on an elastic foundation with variable 

stiffness 

 
Figure 2. The material is distributed along the thickness of the plate 

FGM plates are made of two components: metal and 
ceramic, with the material volume ratio varying according to 
the thickness of the panel. The distribution of volume ratio 
of ceramic (Vc) and volume ratio of metal (Vm) according to 
the formula. 

Vm + Vc = 1 (1) 

where 
pn

c

1 z
V

2 h
 

  
 

, np is the exponential index of the 

material volume.  

The mechanical properties (Elastic modulus E, Poisson's 
ratio ν) depend on the thickness as follows: 

 

 
m c m c

m c m c

E E E E V  

V  

   

      

 (2) 

Figures 3 and 4 depict the relationship between the 
volume ratio of ceramic and metal and the material volume 
exponent, while also considering the variation in plate 
thickness, z. The ratio of ceramic and metal components 
exhibits a smooth and continuous variation from one side of 

the plate to the other, with the ceramic-rich plate having a 
higher ratio on the upper side and the metal-rich plate 
having a higher ratio on the lower side. Hence, the 
mechanical characteristics of the material undergo a 
constant change throughout the FGM plate. 

 
Figure 3. Distribution of Vc (ceramic material ratio) of FGM plates 

 
Figure 4. Distribution of metal material ratio Vm of FGM plates 

The article uses Mindlin's first-order shear deformation 
theory, according to which the displacement at any point of 
the FGM plate has the following expression: 

x 0 x

y 0 y

z z

u (x,y,z) u zφ

v (x,y,z) v zφ

w (x,y,z) w

  


 




 (3) 

where u0, v0, and w are the linear displacements on the 
neutral surface of the plate according to the coordinate axes 
Ox, Oy and Oz. φx and φy are the rotation angles of the cross-
section of the plate. 

Differentiating the displacement components, we obtain 
the deformation components of the plate as follows: 

0 z

s s0

z 

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β β β
ψ ψ

 (4) 

where 
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(5) 

The relationship between stress and strain is as follows: 
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After integrating over the plate thickness, we obtain the 
normal force, moment and shear force components of the 
plate as follows: 
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where the coefficient matrices are determined as follows: 
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Divide the plate into finite elements, each element is 
triangular, then the displacement at any point of the 
element will be interpolated through nodal displacement 
and functions as follows: 

   
3

0 0 x y i 0i 0i i xi yi e
i 1

u ,v , w,φ ,φ N u , v ,w ,φ ,φ


  Nq  (9) 

where Ni are shape functions, qe is the element node 
displacement vector (including 15 components). 

Thus, the strain energy of the plate element has the 
following form: 

 
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2
  β σ ψ τ  (10) 

By evaluating the strain and stress components using the 
shape function and element node displacement vector, we 
can get the finite formula for the strain energy of the plate 
element as follows: 
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where B1, B2, Bs are functional differential matrices. 
The energy exerted by the elastic foundation on the 

plate element has the following form: 
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where kw and ks are two coefficients of the elastic 
foundation as shown in Figure 1, cw is a parameter showing 
the change of stiffness according to x and y coordinates. 

The energy due to external compressive force acting on 
the plate element has the following form: 

e

2
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n n e Ge e2
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1 w 1
U P dS

2 2x
 
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 q K q  (13) 

To establish the balance equation for the plate, the 
article uses the possible work principle as follows: 
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Solving equation (14) obtains the critical buckling load Pn 
and the corresponding buckling mode shapes. 
3.  NUMERICAL RESULTS AND DISCUSSIONS 
3.1. Example of accuracy verification 

The FGM plate is subjected to compression along two 
opposing sides. The plate is composed of Al2O3 (ceramic) 
and Al (metal). The width of the plate is denoted as a and the 
length as b, with a being equal to b. The thickness of the 
plate, denoted as h, is equal to one twentieth of a. The 
ceramics have an elastic modulus of 380GPa and a Poisson's 
ratio of 0.3, whereas the metals have an elastic modulus of 
70GPa. The plate is positioned on a two-coefficient elastic 

basis characterized by parameters 
4 2

1 w 2 s

a a
k k ,  k k

D D
   , 

where 
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3
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2
m

E h
D

12 1

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. The comparison parameter represents 
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the crucial buckling load of the FGM plate, which is 
determined using the formula kN = Pn a2/Emh3. Table 1 
presents a comparison between the critical buckling load 
determined using the theoretical approach outlined in the 
article and the findings reported in literature [6]. The 
calculations were performed for various elastic foundation 
values, and the obtained data show a high degree of 
similarity. These findings exhibit minimal variances, so 
confirming the dependability of the calculation theory. 

Table 1. Comparison results of the critical buckling load kN of FGM plates 
resting on an elastic foundation, a/h=20 

(  1 2,k k )  k = 0 k = 0.5 k = 1 k = 2 

(102,10) 
[6] 22.112 15.326 12.426 10.296 

This work 22.368 15.318 12.441 10.333 

(103,102) 
[6] 43.387 33.049 28.610 25.325 

This work 44.367 33.365 28.875 25.584 

3.2. Parameter study 
Based on the calculation theory presented above, this 

section presents the results of numerical calculations to clarify 
the influence of several material and geometric factors on the 
static stability response of FGM panels resting on an elastic 
foundation with variable stiffness. FGM panels have a square 
shape with the length and width of panels a and b 
respectively, and panel thickness h. The material's mechanical 
properties are Ec = 151GPa, Em= 70GPa, νc = νm = 0.3. If the 
plate edge has a single support connection, the symbol is S, if 
the plate edge has a clamp connection, the symbol is C. If the 
plate edge is free, the symbol is F. 

The critical buckling load of the plate is calculated 
according to the dimensionless formula as follows 
Ncb=12Pna2  2

m1  /Em
3h , where h = a/10. Two 

dimensionless parameters of the elastic foundation 
4 2

w w s s
w w

a aˆ ˆk k ,  k k
D D

  , với 
 

3
m

w 2
m

E h
D

12 1


 
. 

- Effect of elastic foundation stiffness: consider the case 
of elastic foundation with parameter cw = 0.5, changing the 
stiffness of the elastic foundation. The results of calculating 
the critical buckling load of FGM panels are shown in Tables 
2, 3, one can see comments as follows: When increasing the 
stiffness of the elastic foundation, the plate becomes stiffer, 
so the ultimate load also increases, meaning the plate is 
better able to withstand compression. At the same time, 
when increasing the value of np, the proportion of metal 
components in the plate increases, the plate becomes 
softer. Therefore, the critical buckling load of the plate is 
reduced. 

Table 2. Critical buckling load Ncb of the SSSS FGM plate depend on  
 w s

ˆ ˆk ,  k , 

compression along the Ox axis, a/h=20 

 
 

ˆ ˆ
w sk , k  np = 0 np = 1 np = 1.5 np = 2 np = 10 

[0,0] 8.473 5.903 5.585 5.412 4.691 

[10,0] 8.533 5.963 5.645 5.472 4.751 

[10,2] 8.937 6.366 6.049 5.875 5.155 

[50,5] 9.781 7.210 6.893 6.720 5.999 

[102,10] 11.089 8.518 8.200 8.027 7.306 

[103,102] 26.921 23.017 22.529 22.262 21.152 

Table 3. Critical buckling load Ncb of the SSSS FGM plate depend on  
 w s

ˆ ˆk ,  k , 

four edges are subjected to compression, a/h=20 

 
 

ˆ ˆ
w sk , k  np = 0 np = 1 np = 1.5 np = 2 np = 10 

[0,0] 4.236 2.951 2.792 2.706 2.345 

[10,0] 4.266 2.981 2.822 2.736 2.375 

[10,2] 4.468 3.183 3.024 2.937 2.577 

[50,5] 4.890 3.605 3.446 3.360 2.999 

[102,10] 5.544 4.259 4.100 4.013 3.653 

[103,102] 17.296 15.998 15.836 15.748 15.376 

- Influence of boundary conditions:  This computation is 
applicable to six distinct boundary condition scenarios. The 
critical buckling loads for each scenario are shown in Tables 
4, 5. These findings demonstrate that altering the boundary 
conditions directly impacts the critical load of the FGM plate. 
This is due to the influence of the boundary conditions on 
the structural stiffness. The plate subjected to CFFF 
boundary condition exhibits the lowest critical buckling 
stress, whereas the plate subjected to CCCC boundary 
condition demonstrates the greatest critical buckling load. 

Table 4. Critical buckling load Ncb of the SSSS FGM plate depend on boundary 

conditions, compression along the Ox axis,  
 w s

ˆ ˆk ,  k = [100,10] , a/h=20 

Bc np = 0 np = 1 np = 1.5 np = 2 np = 10 

SSSS 11.089 8.518 8.200 8.027 7.306 

SCSC 17.041 12.325 11.732 11.405 10.050 

SFSF 3.655 3.037 2.961 2.920 2.747 

CFFF 2.276 2.062 2.032 2.016 1.945 

CFCF 8.557 6.366 6.089 5.935 5.301 

CCCC 22.513 16.337 15.557 15.126 13.342 

Table 5. Critical buckling load Ncb of the SSSS FGM plate depend on boundary 

conditions, four edges are subjected to compression,  
 w s

ˆ ˆk ,  k = [100,10] , a/h =20 

Bc np = 0 np = 1 np = 1.5 np = 2 np = 10 

SSSS 5.544 4.259 4.100 4.013 3.653 

SCSC 9.197 6.796 6.496 6.332 5.650 

SFSF 3.545 2.908 2.825 2.779 2.725 

CFFF 2.220 1.978 1.946 1.927 1.849 

CFCF 6.735 5.059 4.848 4.732 4.251 

CCCC 12.093 8.806 8.395 8.169 7.231 

The first four buckling mode forms of the FGM plate with 
two boundary conditions and parameters cw = 0 and cw = 0.5 
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are shown in Figures 5 - 8. These forms illustrate that 
boundary circumstances also impact the buckling modes of 
the plate. Furthermore, the buckling mode forms are also 
influenced by the variation in the value of the foundation cw 
parameter. 

  
(a) Mode 1 (b) Mode 2 

  
(c) Mode 3 (d) Mode 4 

Figure 5. The first four buckling mode shapes of the FGM plate corresponding 

to the SSSS case,  
 w s

ˆ ˆk ,  k = [104,100], cw = 0 

  
(a) Mode 1 (b) Mode 2 

  
(c) Mode 3 (d) Mode 4 

Figure 6. The first four buckling mode shapes of the FGM plate corresponding 

to the SSSS case,  
 w s

ˆ ˆk ,  k = [104,100], cw = 0.5 

  
(a) Mode 1 (b) Mode 2 

  
(c) Mode 3 (d) Mode 4 

Figure 7. The first four buckling mode shapes of the FGM plate corresponding 

to the SCSC case,  
 w s

ˆ ˆk ,  k = [104,100], cw = 0 

  
(a) Mode 1 (b) Mode 2 

  
(c) Mode 3 (d) Mode 4 

Figure 8. The first four buckling mode shapes of the FGM plate corresponding 

to the SCSC case,  
 w s

ˆ ˆk ,  k = [104,100], cw = 0.5 

4. CONCLUSION 
This article introduces a finite simulation approach for 

analyzing the static buckling behavior of functionally 
graded material (FGM) plates supported by an elastic base 
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with varying stiffness values. The plate's expressions and 
equilibrium equations are derived using Mindlin's first-order 
shear deformation theory. The assumption is made that the 
elastic basis has varying stiffness characteristics throughout 
the plane of the plate. In this work, a triangular plate element 
was used to solve the buckling equation of the plate. The 
paper also examined the impact of several parameters, such 
as materials, boundary conditions, and elastic basis, on the 
buckling behavior of this structure. This publication serves 
as a significant reference for the practical design and 
production of FGM plate structures. 
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