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BACK PROPAGATION NEURAL NETWORK-BASED
CUTTING FORCES PREDICTION IN DRY TURNING SKD11 STEEL

OF HEAT TREATED WITH CBN INSERTS
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KHI TIEN KHO THEP SKD11 SAU NHIET LUYEN VGI DUNG CU CAT CBN
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ABSTRACT

Cutting force (CF) is one of the most important factors in improving machining efficiency. It directly affects the
cutting tool life and the quality of the product. This paper presents the results of building a model to predict the
value of the cutting force components using a back-propagation (BP) neural network when dry and hard turning
SKD11 steel after heat treatment. The artificial neural network (ANN) training dataset is collected from 27 full dry
turning experiments with (BN coated hard alloy cutting inserts and various cutting parameters including depth of
cut, feed rate and cutting speed. The value of the cutting force components is measured by a specialized and
modern force measuring device. The back-propagation neural network is established with many different
structures to evaluate and select the most suitable structure. Indicators such as Coefficient of Regression (R2), Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are used to assesment the quality of neural
networks. The research results show that the generated neural network can effectively predict the value of the
shear force components within the trained range. This result is the foundation for further research on vibration and
tool wear as well as building a cutting force monitoring model during machining.

Keywords: Hard turning, cutting forces, neural networks, Back-propagation, (BN inserts.
TOM TAT

Luc ct la mgt trong nhiing yéu t6 quan trong nhat trong viéc ndng cao hiéu sut gia cong. N6 anh hudng truc
tiép dén tudi tho clia dung cu cat va chét lugng san pham. Bai bao nay trinh bay két qua xay dung mé hinh du dodn
gid tri cdc thanh phan lyc cdt st dung mang na ron lan truyén ngugc khi tién kho thép SKD11 sau nhiét luyén. Bo
dit liéu hudn luyén mang no ron dugc thu thap tir 27 thuc nghiém toan phan khi tién khd véi cic manh cat hgp kim
cling phl (BN va cac thong s6 cat khac nhau bao gom chiéu sau cat, tdc d chay dao va van toc cat. Gid tri cac thanh
phan luc cdt dugc do luong bang thiét bi do luc chuyén dung va hién dai. Mang no ron lan truyén ngugc dugc xay
dung véi nhiéu cdu tric khac nhau dé danh gid va lua chon cdu tric phd hop nhat. Cac chi s6 nhu hé s6 hoi quy
(Coefficient of Regression - R2), Root Mean Square Error - RMSE va sai so tuyét doi phan tram trung binh (Mean
absolute percentage error - MAPE) dugc st dung dé danh gia chat lugng mang na ron. Két qua nghién ciiu cho thdy
mang na ron dugc ra cd thé du doan hiéu qué gia tri cac thanh phan luc cdt trong pham vi dugc dao tao. Két qua
nay la nén tang dé tiép tuc nghién ciu vé rung ddng va mon dung cu ct ciing nhu xdy dung md hinh giam sat luc
cdt trong qua trinh gia cong.

Tirkhéa: Tién ciing, luc cdt, mang no-ron, lan truyén nguoc, dung cu cdt (BN.
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1. INTRODUCTION

In recent decades, hard turning
technology has been studied to
replace grinding technologies in
finishing hardening steel products
[1-3]. During hard turning, thanks to
the single-blade tool it is possible to
precisely adjust the cutting angle
and thus easily machine complex
surfaces of the product. Compared
with grinding, hard turning has
many outstanding advantages in
economic and ecological aspects
[4]. The most significant advantage
of hard turning is that it is possible
to use one tool and still machine
many different shaped parts by
varying the toolpath. Meanwhile, if
you want to sharpen other detailed
shapes, you must fix the stone or
change another stone. In particular,
hard turning can process complex
profiles that are difficult to achieve
with grinding. Moreover, hard
turning can also perform dry
machining [5-7] without the use of
cooling fluids, so it does not affect
the environment and workers'
health [8]. However, hard turning
also requires a technological
system with high rigidity and high
accuracy [9].

In the machining process, many
physical phenomena occur that
affect the quality and productivity
of machining vibration, friction,
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cutting force and tool wear [10, 11]. These factors all greatly
affect product quality such as machining errors, mechanical
properties and their ability to work. The causes for these
phenomena to occur all stem from the selection and change
of machining factors such as cutting parameters (cutting
speed, depth of cut, feed rate), material of workpiece and
tool, the rigidity of the technology system. Accordingly, the
cutting force is one of the factors that change continuously
throughout the machining process. Cutting forces are
measured and analyzed in [12] during high-speed milling of
aluminum alloys. The CF value is determined in the stable
region and averaged. A mathematical model is built in [13]
to predict the CF when microdril cutting. This factor
prediction model was also developed in [14] in surface
milling based on FEM and NURBS. The stochastic model of
the CF is built and analyzed in [15] with the turning process
through orthogonal CF measurements. The important
results of this study show that the variance of the CF
measurement signal is in the range of 4% - 9% of the mean
value. The value of the marginal CF was investigated in [16]
when milling the inclined plane with a cutter for hard alloy
55NiCrMoVe6. The technique of signal processing to measure
CF is described in detail in [17] when using a tunneling
machine. The CF measurement and force spectrum analysis
are described in [18] with milling through a PVDF thin film
sensor. The CF prediction model including tool wear is also
described in [19] during high-speed turning of Nimonic
C263 superalloy.

The rapid development of computer science has made
ANN a popular choice for building predictive models. The
efficiency of applying ANN compared with other prediction
methods is also compared as in [20, 21]. Different types of
neural networks such as forward propagation [22, 23],
convolutional network [24], back-propagation networks are
widely used by scientists based on the superiority of and
their effectiveness [25, 26]. The BP network is presented in
[25] to build a predictive model of tool wear when turning
H13 steel hardening. The predictive model of cutting heat,
cutting force and tool wear is built based on the BP network
in [26] during dry turning of Nimonic C263. Recently,
convolutional networks (CNN) combined with image
processing techniques have also been considered in some
applied studies [24, 27-29], Fuzzy-ANN hybrid network [30,
31], deep learning network [32, 33].

This paper presents the results of establishing back
propagation network to predict the value of cutting force
components when turning hardening SKD11 steel without
cooling after heat treatment. This BP network is built
separately for each CF component with the Gradient
Descent algorithm that continuously updates parameter
sets of the BP networks. With various tests, a suitable BP
networks structure to predict the value of each CF
component has been determined. R?, RMSE and MAPE
criteria were used to evaluate the predictive quality of these
BP networks. The research results are the foundation for
building a cutting force monitoring and warning system as
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well as determining the cutting tool life under different
machining conditions.

2. MATERIALS AND METHODS
2.1. Setup experimental system

The whole experiment was carried out on a HASS-ST10
lathe. Select SKD11 steel workpiece that has been heat
treated to reach hardness 54+56HRC, workpiece length is
300mm, and diameter is 30mm (Fig. 1). The chemical
composition of the embryos is described in Table 1.

Table 1. Chemical composition SKD11 steel

Ingredients C Si | Mn Cr Ni Mo Va

145- | < < 1.0- | 0.25- | 04- | 0.15-
165 | 04 | 035 | 125 0.4 0.6 0.3

For cutting tools, choose the CBN insert piece with
symbol TNP-VNGA168408G2 (MB8025) of MITSUBISHI
with specifications including IC = 9.525mm (Insert IC Size);
LE = 16.606mm (Insert Cutting Edge Length); S = 4.76mm
(Insert Thickness); RE = 0.8mm (Corner Radius); D1 =3.81Tmm
(Insert Hole Size).

%

Figure 1. Workpiece SKD11

The 9257BA-Kistler 3-component dynamometer is used
to record the variation value of the CF in the three directions
X, ¥, z respectively F,, Fy, F.. The instrument is supplied with
the control box 5233A1, A/D converter, Nl USB-6009 receiver
(DAQ) and DASYLab 10.0 software. The tool wear value was
determined after each machining interval with the help of
an electron microscope UMO012C. The experimental system
is depicted in Figure 2.

The experiments were carried out with the set of
technology regimes recommended by the cutting tool
supplier and through a number of preliminary tests. The
technical parameters are described in Table 2.
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Microscope Kistler
UMO012C Dynamometer el

Figure 2. Machining and measuring systems

Table 2. Cutting parameters

Parameters Level 1 Level 2 Level 3
V{(mm/min) 80 125 170
s(mm/rev) 0.07 0.11 0.15
a,(mm) 0.1 0.175 0.25

2.2. Measurement data processing

The measuring signal is the components of the shear
force including Fy (axial force), F, (radial force), F, (tangent
force). The total force Frotal is determined as follows

I:Total = \}sz + Fy2 + Fz2 (1)

The components of the cutting force in turning and the
location of the tool wear value are depicted as shown in
Figures 3a and 3b.

Workpiece

Fx

Fx: Axial force
Fy: Radial force
Fz: Tangential foree

i) ®)

Feed rate Foot

Figure 3. Cutting force components and tool wear measurement position

Figure 4 shows the interface when measuring and
displaying the cutting force components. The CF value is
presented in the form of a histogram.

" 056 3%eO REAR X

FL L] L]
Sewx S sy - meer
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Figure 4. Measurement interface and signal processing results

The results after data processing and measurement are
shown in Table 3. In which, Fy.,, Fy, and F.. are the measured
force values. The Fy,, Fy, and F,, are the predicted force
values from BP networks.

2.3. Back-propagation network structure and evaluation
criteria

For BP networks, the adjustment of bias coefficients and
weights takes place continuously during the training of the
predictive model. These tuples are continuously updated
through the loss function value control. The smaller the loss
function value, the better the network quality. This means
finding the minimum value of the loss function with the
corresponding set of weights and bias coefficients. The
algorithm commonly used in BP networks is Gradient
Descent (GD). The most common approach is to start from a
point that considering close to the solution of the problem
or a random point on the loss function, and then use an
iterative operation to progress to the desired point in
descending order of the derivative value. It means until the

derivative is close to 0. The parameters of the
backpropagation network are updated as follows

w._.=w__—ad 9) . =b_.—a 0J 2

next pre awpre I ~next pre 6bpre ( )

In which, J is loss function; Wy and Wiex: are the weights
before and after the update, respectively; bpe and byex are
the bias coefficients before and after the update; a is the
learning rate. This factor is an important parameter used to
control the number of iterations in the GD algorithm. When
this parameter is small, the algorithm will need many
iterations for the function to reach the minimum point.
Conversely, if this parameter is large, the algorithm will need
less iterations, but then the function may skip the minimum
point and cannot converge. Predictive models based on
ANN all have specific assessment criteria for model
performance, accuracy and reliability. These indicators
include R?, RMSE and MAPE. The coefficient value R?
represents the relationship between the predicted values
and the random values. If the R? value approaches "1", the
relationship is powerful. In contrast, if the value of R?
approaches "0", the relationship is random. The larger the
value of R? and the smaller the RMSE, the more reliable the
model is.
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Table 3. Actual and predicted values

a V. Measured and predicted force values
Ex. No . s (mm/rev)

(mm) (m/min) Fya (N) Fyp (N) Fy. (N) Fyp (N) F..(N) F,, (N)
1 0.100 80 0.07 68.96 68.96 32.68 32.70 255.6 255.61
2 0.100 125 0.07 71.21 71.21 29.72 29.69 282.78 282.78
3 0.100 170 0.07 13837 13837 54.67 54.66 541.85 541.87
4 0.100 80 0.11 222.76 222.76 154.29 154.28 868.98 869.01
5 0.100 125 0.11 230.16 230.16 101.87 101.89 767.51 767.59
6 0.100 170 0.11 215.90 215.9 96.74 96.71 945.64 945.63
7 0.100 80 0.15 128.09 128.09 88.48 88.49 528.52 528.53
8 0.100 125 0.15 298.53 298.53 1324 132.46 882.19 882.11
9 0.100 170 0.15 70.56 70.56 63.41 63.35 410.95 411.05
10 0.175 80 0.07 281.11 281.11 207.36 207.36 1M7.5 1061.67
1 0.175 125 0.07 318.39 349.17 168.58 222.44 644.97 1132.75
12 0.175 170 0.07 149.16 223.58 115.65 115.67 564.73 564.76
13 0.175 80 0.11 243.57 243.56 99.23 99.25 755.16 755.17
14 0.175 125 0.11 295.93 295.93 168.95 168.88 1248.5 1248.42
15 0.175 170 0.11 65.66 290.2 28.16 28.25 257.05 257.09
16 0.175 80 0.15 380.06 380.06 258.45 258.40 1225.5 1225.45
17 0.175 125 0.15 222.74 222.74 162.88 162.94 804.77 804.98
18 0.175 170 0.15 285.96 285.96 120.74 120.63 880.56 880.48
19 0.250 80 0.07 333.51 333.51 271.32 271.30 1482.5 1482.49
20 0.175 125 0.07 379.96 349.17 222.43 222.44 1620.5 1132.75
21 0.250 170 0.07 305.98 305.98 236.9 233.02 1316.2 1316.25
2 0.250 80 0.11 58.99 58.99 7.99 8.00 228.17 228.23
23 0.250 125 0.11 341.00 400.81 142.14 185.11 720.64 980.75
24 0.250 125 0.11 460.63 400.81 228.08 185.11 12409 980.75
25 0.250 80 0.15 194.90 194.9 75.68 75.73 214.99 816.85
26 0.250 125 0.15 349.77 349.77 154.95 154.74 828.57 828.47
27 0.250 170 0.15 44215 442.15 176.92 177.14 923.24 923.28

The expression defining R? is described as follows

The expression of the RMSE is presented as follows

-I N
RMSE == S0y =Y.’ @
i=1
The MAPE value entitles to estimate the deviation (in
percentage) between the predicted value and the actual
measured value. The expression for determining MAPE is
defined as follows

ypi —VYi
yri
where, y,i and y. are the predicted values from the model

and the values measured in the i experiment, respectively.
N is the number of experiments.

MAPE :%i[

i=1

]x] 00 5)

2.4. BP network training results and discussion

After many times of testing different network structures,
it was found that the quality of ANN depends on many
factors such as the number of input and output variables,
the number of hidden layers and neurons in each hidden
layer, the size of training dataset, the training algorithm, the
proportion of data used in the network construction stages,
and the nature of the actual model that needs to be
predicted through the training dataset. Accordingly, in this
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study, the BP network structure (3-10-30-1) corresponding
to each cutting force component is described in detail as
follows:

Number of input variables is 03 (corresponding to
parameters a,, Vc and s). The number of output variables is
01 (corresponding to each cutting force component). The
number of hidden layers is 02. The number of hidden layer 1
neurons is 10 and the hidden layer 2 neurons is 30. The split
ratio of training data is 80%, test data is 10% and validation
is 10%. The data divided is random. The learning rate of the
BP network is 0.01. The learning rate increase is 1.05. The
learning rate reduction is 0.8. The training function is
“traingdx”. The transfer function is “logig”. The number of
iterations of training iterations is 5000. The network
structure is depicted as shown in Figure 5. The loss function
used in this case is RMSE.

Figure 5. Network structure 3-10-30-1

The results of training the BP network for the cutting
force component F, are shown in Figure 6. Accordingly, the
R? index in the training process reached over 0.98. The
predictive value of CF on the entire learning data in Figure 7
shows that there is a large difference, especially in
experiment 15. This directly affects the quality of the
network.
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Figure 6. BP network training results for F,
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Figure 7. Fy prediction results

The training results of the BP network for the F, in Figure
8 give good results with the R? value above 0.97. Figure 9
depicts the prediction results of the BP network on the entire
learning data of the force component F,. The difference
between the actual values and the predicted values is not
too large.
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Figures 10 and 11 show the results of training the
network and predicting the force component F,value. The
training result is only R?= 0.91. This is the lowest predicted
result of the cutting force components. Accordingly, the
prediction results on the entire learning data set also show
many deviational values.

The criteria for evaluating the network quality on the
whole prediction data are described in Table 4. Accordingly,
the BP network predicts F, for the lowest prediction
quality while the BP network predicts F, for the best quality
(R?=0.988; RMSE = 16.13; MAPE = 3.94).

Table 4. Values of network quality indicators

0
123 4567 8 91011121314151617 18 19 20 21 22 23 24 25 26 27
Number of Experiments

Figure 9. F, prediction results
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Figure 10. BP network training results for F,
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Figure 11. F, prediction results
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(riteria BP-F, BP-F, BP-F,
R 0.968 0.988 0.954

RMSE 49.07 16.13 190.17
MAPE 5.86 3.94 8.08

As can be seen, the results of estalishing BP networks to
predict cutting force components clearly show some issues
that need to be further addressed such as:

« The performance of the GD algorithm applied to the
back-propagation network is highly dependent on the input
data. Therefore, the processing of input data needs to be
considered with a high degree of efficiency and reliability.

« It is easy to see that the back-propagation network with
GD algorithm is quite sensitive to noisy data with a large
difference in prediction values. Therefore, it is necessary to
consider other solutions to improve the network training
performance in particular and the prediction quality of the
network in general.

« It is possible to consider building hybrid networks or
combining BP networks with optimization algorithms to
help train the network to achieve a global minimum for the
loss function.

3. CONCLUSIONS

Predictive models of cutting force components have
been successfully built based on backpropagation network
structure with GD algorithm when turning hard and dry steel
SKD11. The predictive performance of ANN networks is
acceptable with the evaluation criteria R?, RMSE and MAPE.
The 3-10-30-1 network structure gives good prediction
results with cutting force components F,, F.. The cutting
force component F, has a predicted result of over 91%. This
reflects the reliability of the input data or the parameters of
the ANN that have not reached the best value. Research
results can also point out some points to pay attention to in
the process of building the network as well as considering
additional solutions to improve network quality.
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