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NUMERICAL SIMULATION OF 2D FLUID FLOW USING THE
FINITE ELEMENT DISCRETIZATION ON UNSTRUCTURED GRID
COMBINED WITH ADAPTIVE MESH REFINEMENT TECHNIQUE

MO PHONG SO DONG CHAY TRONG KHONG GIAN HAI CHIEU BANG ROI RAC PHAN TU' HUU HAN

TREN LUGI KHONG CAU TRUC KET HGP VI KY THUAT LAM MIN LUGI CUC BO

ABSTRACT

The finite element method (FEM) has been successful in simulating complex physical systems in science and
engineering. A big challenge of using the FEM is how to reduce computation time in large-scale problems. In this
paper, we propose combining the FEM and an Adaptive Mesh Refinement (AMR) technique for solving an
incompressible fluid flow on unstructured grids. We use the magnitude of the vorticity field as an indicator function
to detect the region that needs to be refined and then refine the original mesh using an element subdivision
technique. The governing equations are discretized using a finite element method based on the linear, equal order
P1P1 elements (linear order for both velocity and pressure). The Navier-Stokes equations for unsteady fluid flow are
solved using a three-step projection method with the Crank-Nicolson scheme employed for the temporal
discretization of diffusion term and the Adams-Bashforth scheme for convection term. The performance of the
present method is verified for several benchmark problems in 2D domains. It shows that the proposed method can
provide enough accuracy compared to the previous results. Moreover, the present method can significantly reduce
the CPU time compared to the traditional method without using the AMR technique.
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TOM TAT

Phuang phap phan t& hitu han da kha thanh cdng trong viéc md phong cac van dé vat ly phic tap trong khoa
hoc va ky thudt. Mot thi thach rdt I6n trong viéc st dung phuong phap phan tit hitu han la t6i uu thdi gian tinh trong
nhiing bai toan |dn. Trong bai bao nay, chiing téi trinh bay su két hgp cta phuang phap phan ti hitu han véi ky thudt
lam min ludi cuc bd dé md phong dong khdong nén trén ludi khong cdu tric. Phuong phap nay st dung do lon cla
vector xody Ia ham diéu khién d€ xac dinh viing can lam min ludi, sau d6 qud trinh lam min dugc thuc hién thong qua
viéc chia nhd cac phan tl ban dau. Cac phuang trinh chd dao dugc roi rac bang phuong phap phan ti tuyén tinh
khong cdu triic (tuyén tinh cho ca vin toc va ap sudt). Diing phuong phap tach ba budc két hop véi phuong phap
(rank-Nicolson dp dung cho su rgi rac thanh phan lyc nhét va phuong phap Adams-Bashforth ap dung cho thanh
phan luc quan tinh dé gidi phuong trinh Navier-Stokes cho dong khdng nén dugc. Su hiéu qué ctia phuong phap nay
dugc ki€m ching qua mét s6 vi du trén mién tinh toan hai chiéu. Két qua cho thdy phuong phap nghién ciiu c6 thé
cung cap do chinh xac can thiét so véi cac két qud da cdng b trudc do. Hon nifa, vdi ki thuat lam min lu6i cuc bg,
phuong phép cd thé gidm dang ké thdi gian tinh toan so véi viéc khdng st dung ky thuat nay.

Tir khéa: Lam min luGi cuc b, phuang phdp phdn ti hitu han, Iudi phi cdu tric, dong khéng nén.
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1. INTRODUCTION

During the last few decades,
many numerical methods have
been developed to solve the
Navier-Stokes equations. The
equations for unsteady fluid flow
can be solved by a segregated
algorithm (also called the
fractional step) which obtains the
pressure and velocity
components separately, or by a
coupled algorithm that obtains
all the variables simultaneously.
The former approach uses a
smaller computational memory,
which helps the large-scale
problem, while the latter method
has the advantage of
convergence robustness.

The finite element method
(FEM)  successfully simulates
complex physical problems in
science and technology among
the numerical approaches to
solve the Navier-Stokes
equations. However, a big
challenge of using the FEM
method is the very high
computational cost, especially
for the large-scale problem.
Several techniques are adopted
to reduce the simulation's
computational time using the
FEM method, such as the
parallel computation, the
multigrid method (MG), or the
adaptive  mesh  refinement
(AMR) technique.
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To obtain an accurate solution at a lower computational
work, the AMR techniques are usually used in many
technology and engineering fields. For the dynamic fluid
flow simulations, many problems can be treated
advantageously using the AMR technique (e.g. [1, 2]). AMR
techniques can be combined with the MG solver for more
efficient performance, especially for simulating unsteady
flows. There exist many studies on adaptive, e.g. multigrid,
in literature. The steady solution is obtained using the
combination of the multigrid and an adaptive algorithm
based on a posteriori error estimation [3]. In their work, the
mesh is initial as a coarse-grid, and the local hierarchical
essential adaption is used at the high error region to get
the more advanced level. The solution is obtained on the
most refined grid, which is satisfied with the error criterion.
This combination can be used in uniform mesh [4]. Their
simulations are successful on the Cartesian grid. The
uniform grid is initialized, and the local refinement
technique based on the element subdivision is used to get
a higher mesh resolution. In the present study, we
concentrate on the unstructured grid, which is a
distinguishing feature of the finite element method. The
AMR technique using the vorticity magnitude of fluid flow
as an indicator is investigated in the present research.

The remainder of the paper is organized as follows:
Section 2, we describe the numerical method for the finite
element method for incompressible Navier-Stokes flow and
the AMR technique; Section 3 shows the numerical results
of 2D benchmark problems for validation and discussion;
Finally, some conclusions are drawn in Section 4.

2. NUMERIAL METHODS
2.1. Finite element method for incompressible flow
2.1.1. Governing equations

The fluid domain is denoted by Q with boundary I'. The
governing equations of fluid flows are the incompressible
Navier-Stokes equations which can be written as follows [5]:

V-v=0 inQ

p{z—:Jrv-Vv}:V-owpb in Q M

where p, v, b and o denote the fluid density, the
velocity vector, the body force vector, and the stress tensor,
respectively. The fluid is assumed Newtonian with the
corresponding constitutive equation is written by:

o=-—pl+r,

T=y[Vv+(Vv)'] @)

where p, W, T, I and T indicate the pressure, the fluid
dynamic viscosity, the shear stress tensor, the second-order
identity tensor, and the transposition, respectively. The
Dirichlet and Neumann boundary conditions are described
as follows:

v=V onl,,

(3)

oxn=t on',
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where n denotes the outward unit normal vector of the
fluid boundary, and T', and T, - the boundaries on which
the velocity (V) and traction (t) are defined, respectively.

2.1.2. Fractional method

In this study, we employ the fractional method [6] to
solve the incompressible Navier-Stokes equations. The
second-order-implicit Crank-Nicolson scheme is employed
for the temporal discretization of the diffusion terms and
the second-order-explicit Adams-Bashforth scheme for the
convective terms. A fractional three-step scheme can be
written as:

ﬁi —U n-1.n-1 |"l A n
At (3uJ uy, —u ) $<uiﬁjj + uiqjj) (4)
p,njj+1 = %Oi,i (5)
uin+1 - Ai 1 n+1
At == Fp,i (6)

where At is the time step; the superscript n denotes the
time level. In this procedure, the intermediate velocity G is
solved by the momentum equation (4). At the next step,
the pressure is obtained by solving the Poisson equation
(5), and then the velocity is corrected by the pressure (6).

2.1.3. P1P1 finite element formulation

We use the P1P1 finite element (linear order for both
velocity and pressure) for all variables; the pressure is
placed at the same node as the velocity. The momentum
equations are discretized using a consistent streamline
upwind Petrov-Galerkin method and the pressure equation
using a Galerkin method, and their weak formulation can
be written as follows:

Find ueH'(Q), G eH' (Q) andp e H' (Q) such that:

jw 'dQ+ jwuu”dQ
HJ.W'R dr- Iw,Ju,JdQ )
——Iw Uty — Ul 1u“)dQ
Q I, 0
IW o A. dQ———J‘anHdQ ©)

for all admissible functions

=[wlweH@,w=00nT,},

weV,qgeP where

={q|qu1(Q),q=O on Fp}
and H'(Q)) denotes the Sobolev space defined on the spatial
domain Q. In equation (7), ﬁ” =Uu; N, denotes the Neumann

boundary of velocity. It should be noted that equation (8) is
the Poison-type equation.
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2.2, Adaptive refinement mesh technique
2.2.1. Grid refinement indicator

A new mesh is obtained from the primary grid by local
refinement at the regions controlled by the refinement
indicator. Depending on the specific problems, the
indicators will be selected so that the solution on the newly
obtained mesh will be sufficiently accurate with the
smallest number of grid elements. It is the interface
position in the two-flow problems [7]; in the unsteady fluid
flow, the indicator can be chosen as an element Reynolds
number [8] or the magnitude of the vorticity field [9]. The
magnitude vorticity is calculated on each element using
the gradient of the velocity field. For the linear tetrahedral
element (four-nodes), the velocity gradient can be
obtained by an analysis formula based on the velocity and
the position of nodes.

In 2D computational domain, the magnitude of vorticity
field is calculated by:

6v_6u

fol- |2 -2

(10)

where u and v are the vector components and can be
written using the finite element approximation as follows:
u=Nu, +N,u, +N,u,

(1

v=Nv,+N,v, +N,v,

and

ou ON, ON, ON,

—=—lu,+—2u, +—>u,

o ¥y 2
ov % ON, ON,

—= Vi+—=V, +—V,
ox  Ox Ox Ox
=N, + Ny, + N, (#45,v3)

v=Ny +Nv, + Ny (*3:34)

/ {mn'\
[ )
(x,¥)
(v, }Z
i — SO (t1;.v)

(. )
(x3.05)

Figure 1. Linear approximation of velocity on triangle element

The N;, N, and N; on the equation (11, 12) are shape-
functions associated with nodes 1, 2 and node 3 on Fig. 1,
respectively. The shape-function on the triangle element
(Fig. 1) is the linear order of coordinate ¥, y. It leads to the
results that the gradient of the velocity field (6v/0x, du/dy)
can be calculated using coordinate of nodes on the
element. The derivative of the shape-functions on equation
(12) is written detailed as follows:

%:l(b_a); a&:__‘lb’%:la
oy J oy J oy 3
S P S P R
ox J ox J ox J
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where a = x,- X, b=%;-%,¢c=y,-y,d=y;-y, and
J=ad-bc.

Using the formula (12) and (13), the magnitude of the
element in equation (10) can be directly calculated using
the coordinate and the velocity of nodes on the element.

2.2.2. AMR based on element subdivision

The goal of the AMR procedure is to produce a sufficient
mesh resolution at the region of interest. The refinement
indicator is calculated over time, and the mesh is updated
continuously to ensure that the mesh resolution in the high
vorticity region is always satisfactory enough. Several
subdivision patterns have been proposed for unstructured
meshes, such as the longest edge refinement technique, the
successive bisection technique, the newest vertex bisection
algorithm, or the classical techniques (h-refinement).

In this work, we adopt the classical h-refinement
technique, which subdivides a triangular element into four
smaller ones (1:4 subdivision) in a 2D space and a
tetrahedral element - eight smaller ones (1:8 subdivision) in
a 3D space. From an initially fixed grid, the adaptive zone is
identified. It contains the cut element (purple elements),
which has a high vorticity magnitude, the adjacent element
of this cut element, and the hanging elements, shown in
Fig. 2. The neighbouring element (blue elements) can be
selected from one or more neighbour layers of the cut
element to smooth the grid between the refined and
unrefined regions. The identification process can be
repeated for a higher level of refinement based on the
presently refined mesh, shown in Fig. 3.

|. 1** neighboring layer

cut element

Figure 2. The initial mesh and an adaptive zone [7]
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is in good agreement with the fine grid obtained by using
the full refinement subdivision, whereas the solution in the

basic grid has a significant error.
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Figure 3. The classical subdivision in triangular elements [7]:

a) one-level adapted mesh; b) two-level adapted mesh

In order to avoid the badly deformed elements in the final
refined mesh, the higher adaptive zone of refinement can only
be created at the region where the elements were subdivided
regularly in the lower level of refinement. In the reference [7],
the AMR technique was described in more detail and
successfully validated many unsteady flow problems.

3. RESULTS AND DISCUSSIONS

3.1. Lid-driven cavity

The first benchmark is the lid-driven cavity problem; the
computation domain and the boundary conditions are
shown in Fig. 4. The Reynolds number is defined by
Re = pUL/u where p and p are density and viscosity,
respectively. The problem is examined with Re = 100,

Re = 1000, and Re = 5000.
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(u=0,v=0) x
(0,0) (L,0)

0

Figure 4. Schematic and boundary conditions of the 2D lid-driven cavity problem
Figure 5. The grid: a) Basic; b) AMR technique; c) Second full refinement

The fractional three-step is used to solve the
incompressible fluid; the AMR procedure is performed  sybdivision
every five-time steps At = 5.10%s. The CG-ILU(0) [10]
method is adopted to solve the momentum and the
correction velocity equations. The Poisson pressure
equation is solved by using the multigrid method [11]. The
basic grid and the fine grid obtained using the second level
of the full refinement technique are shown in Fig. 5a and

Fig. 5b, respectively. The numbers of nodes and elements
of different types of the grid are listed in Table 1. It can be
noted that the number of elements is increased four times
after each full AMR refinement. Fig. 6 shows the streamlines
of steady-state (Fig. 6a) and the comparison of vertical
velocity at centerline (y/L = 0.5) for the case of Re = 1000
(Fig. 6b). It is shown that the solution of the AMR technique 2
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—a ——— AMR Grid
----- Basic Grid
Full Refinement Grid

0.2
0 3
-0.2
-0.4
N
064 02 0.4 o 0.6 0.8 1 Re = 5000
b) Figure 7. The vorticity magnitude contour and its corresponding final mesh
for various Re numbers

Figure 6. Re =1000: a) Streamlines; b) Comparison of vertical velocity (v) at
y/L=10.5 of local AMR, basic grid and full AMR grid :

Table 1. Grid information ———— present
° Ghia et al.
First full Second full et
. . AMR
Type of grids | Basic | refinement refinement .
.. L technique
subdivision subdivision _
No. nodes 316 1,213 4,657 1,513 E
No. elements | 566 2,264 9,056 2,866

Fig. 7 shows the final mesh and the vorticity contour at
various Reynolds numbers. The solution is obtained at a
steady state. The mesh is refined at the high magnitude
vorticity to get an accurate solution. In this case, we used

only one AMR level to get a final grid. The AMR-FEM code is ylL
validated by comparing velocity at the centerlines of the a) u-component velocity at x/L = 0.5
domain in x-direction and y-direction. The results are in 0.6

good agreement with those proposed by Ghia [12], as Re

present

shown in Fig. 8. Further, the computational time with AMR Ghia et al.

grid is smaller, around three times compared to that of a
fine mesh using second full refinement subdivision.
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Figure 8. Comparison of the velocity profiles of present code based on AMR-
FEM and previous results

3.2. 2D flow around a circular cylinder
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;@Aémmhjﬂ%;ﬁ;gﬁ;ﬁ;ﬁ%}#{“ j The second benchmark problem is 2D flow through the
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7 m;:exa.AeA.;xexeAﬂ.xexex&%f% cylinder. The schematic and the primary grid are shown in
SRR

X | . . . . . .

ORI IRIRKY ' Fig. 9. The uniform velocity is set at the inlet, the non-slip
N A ks . . N

R R RR R ES condition is set at the cylinder, and the far-field is set at the
SRR bottom and the top. For the outlet, we use the convective
X wAV IR outflow boundary condition proposed by Choi H.G [6].
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the Reynolds number defined by the cylinder diameter D
and the uniform velocity at the inlet U_: Re = pU_L/p. In this

Re =1000
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work, we simulate with Re = 40 and Re = 100 to get a
steady flow and a vortex shedding flow, respectively.

4 4

N

H/2 7

H/2

o«

H

a) b)
Figure 9. The schematic (a) and the basic grid (b)

The solution is obtained in the final mesh, which is
constructed based on the magnitude of the vorticity vector.
Fig. 10 shows the final mesh and the vorticity field. This
mesh will be fixed in the steady case (Re = 40) when the
flow is stable (Fig. 10a). The final mesh is updated over time
for the vortex shedding flow (Re = 100) (Fig. 10b).

Table 2 and Table 3 show the quantitative comparison
of the present work and previous works. The results agree
well with the others in the literature. The difference of
present results with other recent results is less than 2% [14,
15]. The results from Martinez et al. are quite different from
the others, maybe because of the low grid resolution at
that time. In the case of Re = 100, the vortex shedding is
appeared behind the cylinder (Fig 10.b) with a frequency f
(also frequency of the lift force). Therefore, the Strouhal

number (St) is a dimensionless number describing
oscillating flow mechanisms and defined by:
fD
St= U (14)
Table 2. Comparison of the drag force coefficient (C,)
Re Martinez M. Braza Park Present
etal.[13] etal.[14] etal.[15] work
40 13 1.5 1.51 1.49
100 1.1 13 133 1.31
Table 3. Comparison of the Strouhal number (St) at the Re =100
Martinez Rahman Park Choi Present
etal.[13] etal.[16] etal.[15] etal. [6] work
0.160 0.164 0.164 0.164 0.164
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b)Re=100(tU_ /D= 101)
Figure 10. Vorticity magnitude contour and its corresponding mesh

Lastly, Table 4 shows the CPU time comparison for the
different types of a grid: Grid obtained by using AMR
technique and the first full subdivision corresponding with
their information of grid (for the case in Fig. 10b). It is
confirmed that using the AMR technique can reduce more
than three times for computational simulation.

Table 4. Comparison of CPU time

Grid First full subdivision AMR Grid
No. nodes 183,635 57,536
(PU time 15.125 4.64s
4. CONCLUSION

This paper combines the finite element method (FEM)
with an adaptive mesh refinement (AMR) technique on an
unstructured grid to solve the Navier-Stokes equation for
unsteady flow. A triangle P1P1 element was used to
discrete the domain, and the projection three-step was
adopted for solving the incompressible Navier-Stokes
equation. In each time step, all elements' vorticity field
magnitudes were obtained and employed as the indicator
function for the element subdivision of the AMR technique.
The two benchmarks have validated the method in a 2D
unsteady fluid flow. The results confirmed that the present
method with the AMR technique proposes an accurate
solution compared to the excellent grid. The CPU time for
the AMR process was short compared to the total
computational time, and the FEM-AMR code can
significantly reduce the CPU time, and it is a powerful
approach for simulation of the large-scale problem. The
extension of the 3D problem is straightforward and will be
reported in future work.
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