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ESTIMATING PARAMETERS AND THE MIXTURE COMPONENT
NUMBER OF A GMM IN THE PRESENCE OF UNOSERVED DATA

UGC LUONG THAM SO VA SO THANH PHAN CUA MO HINH GMM
TRONG TRUGNG HOP MOT SO MAU DU LIEU KHONG QUAN SAT BUQC

ABSTRACT

The Gaussian Mixture Model (GMM) is one of powerful approaches to
model data that is heterogeneous and stems from multiple populations.
However, in some certain situations, a part of dataset is unobservable owing
to censoring problem. This problem refers to the fact that the value of a
measurement or observation is only partially known. For example, the sensors
on smart phones are not able to measure WiFi Received Signal Strength
Indication (RSSI) values below a fixed threshold (-100dBm with typical smart
phones). In that cases, RSSI values which are less than or equal to -100dBm
will return the same value as -100dBm. In this paper, a novel method is
proposed in order to estimate the number of components of the GMM and its
parameters with the existence of censored data by applying the Expectation
Maximization algorithm (EM) and the Sum of Weighted Real elements in
Logarithm of Characteristic Functions (SWRLCF). The experimental results
using artificial data show that this proposal outperform the current
approaches when collected data was suffered from censoring.

Keywords: GMM, EM, SWRLCF, Censored Data.
TOMTAT

Mé hinh hon hop Gauss la mt cong cu dugc st dung mét céch hiéu qua dé
mo ta phan bo clia cac tap dif liéu khong dong nhat va thu thap ti nhiéu doi
tugng/diéu kién khac nhau. Tuy nhién trong mét s6 tinh hudng thuc té, mét
phan cia tap dit liéu cd thé khdng quan sat dugc do bi “cat”. Vi du, cdm bién trén
cac dién thoai thong minh khdng thé do dugc chi s6 cutng do cda tin hiéu phét ra
tlr mot tram thu/phdt WiFi néu ching nhé hon ngudng thu, vi du -100dBm. Khi
d6 tat ca cac phép do ¢4 gid tri nhd hon hodc bang -100dBm sé dugc tra vé véi
cling mot gia tri 1a -100dBm. Bai bdo nay dé xudt cac thudt toan udc lugng cac
tham s6 clia hinh hén hop Gauss va s6 thanh phan Gauss dua trén thudt toan cuc
dai héa ky vong va tong phan thuc ciia ham dac trung. Cac két qua thuc nghiém
véi tap dit liéu md phdng chiing minh hiéu qua cla cac thudt toan dugc dé xuat
50 vdi cac cong trinh da dugc cong bd khi mot phan clia tap dif liéu bi “cat”.

Tir khéa: M6 hinh hon hop Gauss (GMM), thudt todn cuc dai hda ky vong (EM),
tong phdn thuc cia ham ddc trung (SWRLCF), mdt s6' mdu di liéu bi “cdt” va khéng
quan sdt dugc.

"Faculty of Electronic Engineering, Hanoi University of Industry
“Email: kien.vu@haui.edu.vn

Received: 25/01/2021

Revised: 23/6/2021

Accepted: 15/11/2021

Website: https://jst-haui.vn

Vu Trung Kien'”, Tran Quang Viet'

1. INTRODUCTION

The GMM has been widely applied in the fields of signal
processing. It is a model to represent normal distributed
subsets within an overall dataset. The GMM does not
require to know which sub-populations the data point
belongs to, allowing the model to automatically find out
which sub-populations. Since the demographic division is
not known, this constitutes a form of unsupervised
learning. For example, two Gaussian distributions with
different means and variances are used to model two data
sets which are RSSI values collected from two WiFi Access
Points (AP) [1]. If we don't care which AP the data was
gathered from, the distribution of all RSSIs must be the sum
of two Gaussian components with different mixing weights
(Figure 1). The model making this assumption is the GMM.
In general, a GMM may have two or more than two
components. The estimations of the individual normal
distribution components’ parameters and the number of
mixtured components are canonical problems in modeling
data with GMM:s.
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Figure 1. Complete data

In [2, 3], authors used GMMs to model WiFi RSSI data
and applied the EM algorithm [4, 5] to estimate parameters
but the censoring problem was not considered. Censoring
(or clipping) means that the sensors on received devices
are not able to measure RSSI values below a certain
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limitation, for example -100dBm (Figure 2). It occurs owing
to the limited sensitivity of WiFi sensors on portable
devices [6]. In [6, 7], an upgraded version of EM algorithm
was proposed to deal with the censoring problem. The
results showed that parameters were estimated more
accurately when data suffered from censoring. However,
data set was model by single Gaussian distributions but not
GMMs.
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Figure 2. Censored data

The EM algorithm is one of popular methods to
estimate parameters of GMMs but it has a drawback is that
the mixture component number of GMM is not known.
Therefore, it is required to develop a feasible method to
estimate the mixture component number of GMM instead
of assigning it to a fixed number [8]. The AIC [2] and BIC [9]
were used to determine the best mixture component
number for the GMM. These methods can reduce
computational costs and produce relatively accuracy. A
model selection method, basing on the SWRLCF, was
proposed in [10]. This proposal is feasible with applications
that have large amounts of data. Three approaches
mentioned above can estimate the mixture component
number of GMMs effectively when data are complete but
the censoring problem was not noticed.

Taking the all problems mentioned above in to
consideration, the target of this research is to estimate
parameters and Gaussian component number of a
collected data set following a mixture distribution and
suffering from censoring. In the following, the algorithms
for parameter estimation and the model selection are
developed (section 2). The effectiveness of proposed
methods is evaluated in section 3. The conclusion of this
paper is mentioned in section 4.

2. METHODS
2.1. Parameter estimation using the EM algorithm
Definitions:
Yy =[Y,,Y,,--.Yy1is the set of collected data (complete,
non-censored data), y, € R are independent identically
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distributed random variables (n = 1 = N), N is the total
number of samples in dataset; cis the censored threshold;

X =[X;,X,,..,Xy]is the set of censored data,
y, ify,>c
X, = . ;
cify, <c
O =[W,,...;W;l,,...,H;;0,,...,0,]is the set of parameters
of a GMM; J is the Gaussian component number;

B, =[y;;0,] is the parameter of j™ Gaussian component; w,
are positive mixing weights which sum up toone (j=1 + J);
p(...) is the probability density function.

The likelihood of y is

J

:HZWJ P(y,;6;). (1)

n=1 j=1
A

Let A=
Ay A

if y, belongs to the j™ Gaussian component; otherwise,
A,;=0. The equation (1) becomes:

A

n ¥

is a set of latent variables, Ay=1

NJ

A

((y;0.A) HH[W py,;8)] - 2

n=1 j=1

The log-likelihood is as follows:

In[£(y;0,A)]= ZZAW{In

n=1 j=1

+In[ (yn;Gj)]}. (3)

E-step: Calculate the conditional expectation of

In[[(y;G,A)} given by x and parameters at k™ iteration
CRF

E{In[/(y;0.A) [x€"|

=3 i wp(y,i8) JolyoA, i€, aF(@0¥)

= j=El
2For the case A, = 0, F(G;O‘“): 0; when A =1, the
equation (4) becomes:

F(e;0") ZZjln[wp Y,iB, J (Yoo Ay =11x,;60)dy,

n=l =l

::Z,J_Z:,(1—zn)Y(xn;®§k>)[In(wj)ﬂn(f\/(xn;ej)ﬂ "
+§;z B(6):In(w,)+ jl [N(yn;ej)]%dyn .

In the equation(5), z,(n = 1 + N) are binary variables that
indicate observable samples (z, = 0) and unobservable

samples (z, = 1); N(...'Gf")) is the Gaussian distribution
parameterized by 6 ; Functions Y (x :0"), p(@") and

1, (8" ) are as follows:
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M-step:

Calculating partial derivatives of F(e;e‘“’)in terms of
M;,0;,w,then assigning zero we have re-estimated
parameters at (k+1)™ iteration:
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The notations I(G"))and IZ(GE")) are given in the
equations (12), (13):

L(69)=ui1,(61) -
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c—u® (13)
_Lo“‘)(c-fpﬂk))exp ( sl .

(10)

(o)

>
I
>

=
5
=
>
I
>

\/% \/70'5.”

2.2, Estimating the number of components of GMM

In this sub-section, the SWRLCF is proposed to estimate
the Gaussian component number of GMM in the presence
of censored data.

Let W, and G, be the mixing weight and the standard

deviation of j" Gaussian component of GMM (j = 1 = J)
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obtained by applying the EM algorithm mentioned in
previous sub-section. According to calculations in [10], the
SWRLCF of a GMM with J Gaussian components is as follow:

Zw

Figure 3 shows the proposed algorithm for estimating
the Gaussian component number of GMM using the
upgraded EM algorithm developed in sub-section 2.1 and
the SWRLCF given in equation (14).

In the figure 3, a set of incomplete data (x) is inputted; € is
the convergence threshold of the EM algorithm; J,, is the
number of Gaussian components for calculating SWRLCF(J);
T is the convergence threshold of the model selection
algorithm. At J" iteration, the algorithm outputs the

SWRLCF(J (14)

estimated Gaussian component number (j) and estimated

parameters (@, ) using to model distribution of x.

According to equations (6) - (8), (12) and (13), compute Y(xﬂ;@“‘“),[s(@"“),
((9 ),a(6", w‘“), ,( ‘”) and 1, (¢ ‘“) at k" iteration;

According to equation (16), compute ln[ (6)‘“ | x)] at k" iteration

According to equation (9)-(11),
compute 0" {g‘ o) ”]] 1+J at (k+1)" iteration;

According to equation (16), compute ln[é‘(@'“” \ x)] at (k+l)m iteration

/J\
—— [m[s(e""]

False

@“\J/ —

True

‘According to equation (14), compute SWRLCF(J/), J=1+/

IS False R
True
— False
<J\RLCF )-SWRLCF(J -1)|<7
e
True

Output the estimated number of Gaussian components (J =J —1)

and a set of estimated parameters: © ;= [ 15,60, ] j=1+J

Figure 3. The proposed algorithm for estimating the Gaussian component
number
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3. RESULTS AND DISCUSSION
3.1. Parameter estimation

With the aim of evaluating the effectiveness of different
EM algorithms proposed by authors and our proposal
mentioned in sub-section 2.1, we generate 1000 samples of
complete mixture data (y) basing on characteristics of
gathered WiFi RSSI data [1, 11] with a set of true parameters
given in Table 1. Observable (censored) data (x) was
collected by applying function:

{yn ify, >c
X, =

. 15
cify, <c 1)

Table 1. Parameters used to generate artificial data

Parameter | w, 0, M w, 0, B,
Value 0.5 3 -80dBm 0.5 4 -90dBm

The EM algorithm convergence threshold was set to 10
(€ = 10°). Table 2 shows the mean and the standard
deviation of Kullback Leibler (KL) divergence [12] between
true parameters and estimated parameters proposed by
authors. The EM-GMM is the EM algorithm for GMM
introduced in [2, 3]. The EM-CD-G is the upgraded EM
algorithm for estimating single Gaussian data suffering
from censoring and dropping proposed in [6].

Table 2. Parameter estimation compared by mean and standard deviation of KL

c(dBm) | 84 | 87 | 90 | 93 | %
Mean of KL
EM-GMM 7.2847 | 5.6358 | 3.1491 | 0.0329 | 0.0018
EM-(D-G 0.0972 | 0.0886 | 0.0798 | 0.0679 | 0.0664
Proposed EM algorithm | 0.0481 | 0.0126 | 0.0098 | 0.0034 | 0.0016
Standard deviation of KL
EM-GMM 0.1984 | 0.1025 | 0.0351 | 0.0323 | 0.0151
EM-(D-G 0.1851 | 0.1325 | 0.1199 | 0.0175 | 0.0172
Proposed EM algorithm | 0.0624 | 0.0451 | 0.0227 | 0.0176 | 0.0139

As can be seen in table 2, when the censored threshold
(c) is -96dBM, the data are almost observable, the three
methods produced the same results. However, once the
censoring problem occurred, our method showed the best
results among the considered algorithms. This can be
clarified as follows: In the upgraded EM algorithm
mentioned in sub-section 2.1, both observed data (x, = y,)
and unobserved data (x, = c) are contributed to the
estimates.

3.2. Model selection

In this sub-section, the proposed method and other
state-of-art approaches [2, 9, 10] are evaluated through
different experiments on artificial data. The process of
generating data is as follows:

- Generate complete data (y): 4 sets of mixture data with
1, 2, 3, and 4 Gaussian components, respectively J =1, 2,3
and 4) were generated by using 4 set of parameters given
in table 3. The number of samples in a data set is 250.
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- Incomplete data (x) was gathered by using function in
equation (15); the censored threshold (c) was changed to -
90dBm, -92dBm and -94dBm (table 3).

The maximum Gaussian component number for
calculating penalty functions and SWRLCF was set to 8
(Umax = 8). The convergence threshold of the model
selection algorithm was set to 0.02 (t = 0.02). After 1000
experiments, different levels between the true and
estimated number of Gaussian components (J and])
outputted by four approaches were recorded in Table 3.

Table 3. Model selection outputted by four algorithms.

. Results
Methods | Probability
¢=-94dBm | ¢=-92dBm | ¢=-90dBm
=) 0.28 0.01 0.01
Using EM for JA )
GMMand AIC | [J=J] =1 0.21 031 03
Y =i = 2| o5 0.68 0.69
Using EM for 1= 0.82 0.01 0.01
GMMandBIC |[J=]| =1 0.15 039 0.38
[9] =3 >2| 003 06 0.61
Using EM for )= 0.53 0.52 0.02
GMM and N
owR LI =T 0.27 0.39 0.75
[10] P 0.2 0.09 0.23
1= 0.85 0.81 0.76
Proposed |\ 5 _ 41 g1 0.16 0.21
method
1J-]] =2 0.01 0.03 0.03

Results in table 3 shows that our proposed approach
introduced quite better results than other methods,
particularly when almost data were censored (c = -92;
-94dBm). This can be clarified as follows: Proposed method
applied not only the upgraded EM algorithm but also
extended SWRLCF, in which both observed data and
unobserved data are contributed to the estimates (see in
equations (9)-(11),(14)). On the other hand, in the penalty
functions of AIC[2], BIC[9] and SWRLCF [10], there is almost
no practical contribution of unobserved data while they
really contributed to the SWRLCF in our approach, see in
equation (10), (11), (14).

4. CONCLUSION

In this paper, the authors introduced the novel
methods to take the censoring problem presented in
collected data into consideration. Simulation results using
generated data showed that our upgraded EM algorithm
allows to estimate the parameters of GMMs more
accurately than existing methods, especially when
collected data were suffered from censoring problem. By
applying our proposal, errors of estimated parameters
have been reduced. Moreover, by utilizing the extended
SWRLCF, both the number of components and
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parameters of GMMs are estimated accurately. This leads
the fact that the performance in modelling the
distribution of data set is better. In future works, the
proposed EM and model selection algorithm will be
applied to WiFi RSSI based indoor positioning systems so
as to recduce the positioning errors and the calculating
time.
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THONG TIN TAC GIA
Vii Trung Kién, Tran Quang Viét
Khoa Dién tlt, Truong Dai hoc (dng nghiép Ha Noi
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