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ABSTRACT 
The Gaussian Mixture Model (GMM) is one of powerful approaches to 

model data that is heterogeneous and stems from multiple populations. 
However, in some certain situations, a part of dataset is unobservable owing 
to censoring problem. This problem refers to the fact that the value of a 
measurement or observation is only partially known. For example, the sensors 
on smart phones are not able to measure WiFi Received Signal Strength 
Indication (RSSI) values below a fixed threshold (-100dBm with typical smart 
phones). In that cases, RSSI values which are less than or equal to -100dBm 
will return the same value as -100dBm. In this paper, a novel method is 
proposed in order to estimate the number of components of the GMM and its 
parameters with the existence of censored data by applying the Expectation 
Maximization algorithm (EM) and the Sum of Weighted Real elements in 
Logarithm of Characteristic Functions (SWRLCF). The experimental results 
using artificial data show that this proposal outperform the current 
approaches when collected data was suffered from censoring. 

Keywords: GMM, EM, SWRLCF, Censored Data. 

TÓM TẮT 
Mô hình hỗn hợp Gauss là một công cụ được sử dụng một cách hiệu quả để 

mô tả phân bố của các tập dữ liệu không đồng nhất và thu thập từ nhiều đối 
tượng/điều kiện khác nhau. Tuy nhiên trong một số tình huống thực tế, một 
phần của tập dữ liệu có thể không quan sát được do bị “cắt”. Ví dụ, cảm biến trên 
các điện thoại thông minh không thể đo được chỉ số cường độ của tín hiệu phát ra 
từ một trạm thu/phát WiFi nếu chúng nhỏ hơn ngưỡng thu, ví dụ -100dBm. Khi 
đó tất cả các phép đo có giá trị nhỏ hơn hoặc bằng -100dBm sẽ được trả về với 
cùng một giá trị là -100dBm. Bài báo này đề xuất các thuật toán ước lượng các 
tham số của hình hỗn hợp Gauss và số thành phần Gauss dựa trên thuật toán cực 
đại hóa kỳ vọng và tổng phần thực của hàm đặc trưng. Các kết quả thực nghiệm 
với tập dữ liệu mô phỏng chứng minh hiệu quả của các thuật toán được đề xuất 
so với các công trình đã được công bố khi một phần của tập dữ liệu bị “cắt”. 

Từ khóa: Mô hình hỗn hợp Gauss (GMM), thuật toán cực đại hóa kỳ vọng (EM), 
tổng phần thực của hàm đặc trưng (SWRLCF), một số mẫu dữ liệu bị “cắt” và không 
quan sát được. 
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1. INTRODUCTION 
The GMM has been widely applied in the fields of signal 

processing. It is a model to represent normal distributed 
subsets within an overall dataset. The GMM does not 
require to know which sub-populations the data point 
belongs to, allowing the model to automatically find out 
which sub-populations. Since the demographic division is 
not known, this constitutes a form of unsupervised 
learning. For example, two Gaussian distributions with 
different means and variances are used to model two data 
sets which are RSSI values collected from two WiFi Access 
Points (AP) [1]. If we don't care which AP the data was 
gathered from, the distribution of all RSSIs must be the sum 
of two Gaussian components with different mixing weights 
(Figure 1). The model making this assumption is the GMM. 
In general, a GMM may have two or more than two 
components. The estimations of the individual normal 
distribution components’ parameters and the number of 
mixtured components are canonical problems in modeling 
data with GMMs. 

 
Figure 1. Complete data 

In [2, 3], authors used GMMs to model WiFi RSSI data 
and applied the EM algorithm [4, 5] to estimate parameters 
but the censoring problem was not considered. Censoring 
(or clipping) means that the sensors on received devices 
are not able to measure RSSI values below a certain 
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limitation, for example -100dBm (Figure 2). It occurs owing 
to the limited sensitivity of WiFi sensors on portable 
devices [6]. In [6, 7], an upgraded version of EM algorithm 
was proposed to deal with the censoring problem. The 
results showed that parameters were estimated more 
accurately when data suffered from censoring. However, 
data set was model by single Gaussian distributions but not 
GMMs. 

 
Figure 2. Censored data 

The EM algorithm is one of popular methods to 
estimate parameters of GMMs but it has a drawback is that 
the mixture component number of GMM is not known. 
Therefore, it is required to develop a feasible method to 
estimate the mixture component number of GMM instead 
of assigning it to a fixed number [8]. The AIC [2] and BIC [9] 
were used to determine the best mixture component 
number for the GMM. These methods can reduce 
computational costs and produce relatively accuracy. A 
model selection method, basing on the SWRLCF, was 
proposed in [10]. This proposal is feasible with applications 
that have large amounts of data. Three approaches 
mentioned above can estimate the mixture component 
number of GMMs effectively when data are complete but 
the censoring problem was not noticed. 

Taking the all problems mentioned above in to 
consideration, the target of this research is to estimate 
parameters and Gaussian component number of a 
collected data set following a mixture distribution and 
suffering from censoring. In the following, the algorithms 
for parameter estimation and the model selection are 
developed (section 2). The effectiveness of proposed 
methods is evaluated in section 3. The conclusion of this 
paper is mentioned in section 4.    

2. METHODS 
2.1. Parameter estimation using the EM algorithm 

Definitions: 

[ , ,..., ]1 2 Ny y yy is the set of collected data (complete, 
non-censored data), yn ∈ 	ℝ are independent identically 

distributed random variables (n = 1 ÷ N), N is the total 
number of samples in dataset; c is the censored threshold;  

[ , ,..., ]1 2 Nx x xx is the set of censored data, 

n n
n

n

y  if y c
x

c if y c


 


; 

[ ,..., ; ,..., ; ,..., ]1 J 1 J 1 Jw w μ μ σ σΘ is the set of parameters 
of a GMM; J is the Gaussian component number;

[ ; ]j j jθ μ σ  is the parameter of jth Gaussian component; wj 

are positive mixing weights which sum up to one (j = 1 ÷ J); 
p(...) is the probability density function. 

The likelihood of y is 

 
N J

j n j
j 1n 1

p(; w .y );θ


  y Θ
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 is a set of latent variables, Anj = 1 

if yn belongs to the jth Gaussian component; otherwise,  
Anj = 0. The equation (1) becomes: 

 
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 

   y Θ A

 

(2) 

The log-likelihood is as follows: 

   
N J

nj j n j
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E-step: Calculate the conditional expectation of 

 ln ; ,  y Θ A  given by x and parameters at kth iteration 
( )( )kΘ : 
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≜For the case Anj = 0,  (k )F ; 0Θ Θ ; when Anj = 1, the 

equation (4) becomes: 
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(5) 

In the equation(5), zn(n = 1 ÷ N) are binary variables that 
indicate observable samples (zn = 0) and unobservable 
samples (zn = 1);  ( )...; k

jθ  is the Gaussian distribution 

parameterized by ( )k
jθ ; Functions  ( )

;
k

n j
x  ,  ( )

β
k

j
  and 

 k

0

( )

j
I θ  are as follows: 
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M-step: 

Calculating partial derivatives of  ( k )F ;Θ Θ in terms of 

, ,j j jμ σ w then assigning zero we have re-estimated 

parameters at (k+1)th iteration: 
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The notations  k
1

( )
jI θ and  k

2
( )
jI θ  are given in the 

equations (12), (13): 
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(13) 

2.2. Estimating the number of components of GMM 

In this sub-section, the SWRLCF is proposed to estimate 
the Gaussian component number of GMM in the presence 
of censored data. 

Let ˆ jw  and ˆ
jσ  be the mixing weight and the standard 

deviation of jth Gaussian component of GMM (j = 1 ÷ J) 

obtained by applying the EM algorithm mentioned in 
previous sub-section. According to calculations in [10], the 
SWRLCF of a GMM with J Gaussian components is as follow: 

J
2

j j
j 1

ˆˆSWRLCF(J) w σ

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(14) 

Figure 3 shows the proposed algorithm for estimating 
the Gaussian component number of GMM using the 
upgraded EM algorithm developed in sub-section 2.1 and 
the SWRLCF given in equation (14). 

In the figure 3, a set of incomplete data (x) is inputted; ε is 
the convergence threshold of the EM algorithm; Jmax is the 
number of Gaussian components for calculating SWRLCF(J); 
τ is the convergence threshold of the model selection 
algorithm. At Jth iteration, the algorithm outputs the 

estimated Gaussian component number ˆ( )J  and estimated 

parameters ˆ
ˆ( )

J
Θ using to model  distribution of x. 

False

True

Begin

 Input ; 1j j J  x

1J 

1k 

   

       

 

( ) ( )

( ) ( ) ( ) ( ) ( )

0 1 2

( )

β

                I α I, I

;

|

According to equations (6) (8), (12) and (13), compute , ,

, ,  and  at  iteration;

         According to equation (16), computeln

k k

n j j

k k k k k

j j j j

th

k

x

k    

 

 Θ x at  iterationthk

   

   

( 1)( 1) 2 ( 1)( 1)

( 1)
|

                                  According to equation (9) (11), 

  compute  = , , , =1  at 1  iteration;

According to equation (16), compute ln  at 1

kk k

j j j

thk
j

thk

w j J k

k

 
 





   
 

  Θ x  iteration

 
( 1)( 1) 2 ( 1)( 1)ˆOutput estimated parameters:  = , , , =1  
kk k

j j j

k
j j w j J 

      
 

 According to equation (14), compute SWRLCF , =1   maxJ J J

 
ˆ

ˆOutput the estimated number of Gaussian components 1

ˆ ˆˆ ˆ ˆ   and a set of estimated parameters: = , , , 1j j jJ

J J

w j J 

 

    Θ

J≥ 2

True

End

1k k 

False
   ( 1) ( )

| |ln lnk k        Θ x Θ x 

1J J 

False

True

The EM algorithm

   SWRLCF SWRLCF 1J J   

True

 
Figure 3. The proposed algorithm for estimating the Gaussian component 

number 
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3.  RESULTS AND DISCUSSION 
3.1. Parameter estimation 

With the aim of evaluating the effectiveness of different 
EM algorithms proposed by authors and our proposal 
mentioned in sub-section 2.1, we generate 1000 samples of 
complete mixture data (y) basing on characteristics of 
gathered WiFi RSSI data [1, 11] with a set of true parameters 
given in Table 1. Observable (censored) data (x) was 
collected by applying function: 

 n n
n

n

y  if y c
x .

c if y c


 


        (15) 

Table 1. Parameters used to generate artificial data 

Parameter w1 σ1 μ1 w2 σ2 μ2 

Value 0.5 3 -80dBm 0.5 4 -90dBm 

The EM algorithm convergence threshold was set to 10-6 
(ε = 10-6). Table 2 shows the mean and the standard 
deviation of Kullback Leibler (KL) divergence [12] between 
true parameters and estimated parameters proposed by 
authors. The EM-GMM is the EM algorithm for GMM 
introduced in [2, 3]. The EM-CD-G is the upgraded EM 
algorithm for estimating single Gaussian data suffering 
from censoring and dropping proposed in [6]. 

Table 2. Parameter estimation compared by mean and standard deviation of KL 

c(dBm) -84 -87 -90 -93 -96 
Mean of KL 

EM-GMM 7.2847 5.6358 3.1491 0.0329 0.0018 

EM-CD-G 0.0972 0.0886 0.0798 0.0679 0.0664 

Proposed EM algorithm 0.0481 0.0126 0.0098 0.0034 0.0016 

Standard deviation of KL 

EM-GMM 0.1984 0.1025 0.0351 0.0323 0.0151 

EM-CD-G 0.1851 0.1325 0.1199 0.0175 0.0172 

Proposed EM algorithm 0.0624 0.0451 0.0227 0.0176 0.0139 

As can be seen in table 2, when the censored threshold 
(c) is -96dBM, the data are almost observable, the three 
methods produced the same results. However, once the 
censoring problem occurred, our method showed the best 
results among the considered algorithms. This can be 
clarified as follows: In the upgraded EM algorithm 
mentioned in sub-section 2.1, both observed data (xn = yn) 
and unobserved data (xn = c)

 
are contributed to the 

estimates. 

3.2. Model selection 

In this sub-section, the proposed method and other 
state-of-art approaches [2, 9, 10] are evaluated through 
different experiments on artificial data. The process of 
generating data is as follows: 

- Generate complete data (y): 4 sets of mixture data with 
1, 2, 3, and 4 Gaussian components, respectively (J = 1, 2, 3 
and 4) were generated by using 4 set of parameters given 
in table 3. The number of samples in a data set is 250. 

- Incomplete data (x) was gathered by using function in 
equation (15); the censored threshold (c) was changed to -
90dBm, -92dBm and -94dBm (table 3). 

The maximum Gaussian component number for 
calculating penalty functions and  SWRLCF was set to 8  
(Jmax = 8). The convergence threshold of the model 
selection algorithm was set to 0.02 (τ = 0.02). After 1000 
experiments, different levels between the true and 
estimated number of Gaussian components ˆ(J and J)
outputted by four approaches were recorded in Table 3. 

Table 3. Model selection outputted by four algorithms. 

Methods Probability 
Results 

c =-94dBm c =-92dBm c =-90dBm 

Using EM for 
GMM and AIC 

[2] 

ˆ  J = J  0.28 0.01 0.01 

ˆ| |   J J 1   0.21 0.31 0.3 

ˆ| |   J J 2   0.51 0.68 0.69 

Using EM for 
GMM and BIC 

[9] 

ˆ  J = J  0.82 0.01 0.01 

ˆ| |   J J 1   0.15 0.39 0.38 

ˆ| |   J J 2   0.03 0.6 0.61 

Using EM for 
GMM and 
SWRLCF 

[10] 

ˆ  J = J  0.53 0.52 0.02 
ˆ| |   J J 1   0.27 0.39 0.75 

ˆ| |   J J 2   0.2 0.09 0.23 

Proposed 
method 

ˆ  J = J  0.85 0.81 0.76 

ˆ| |   J J 1   0.14 0.16 0.21 

ˆ| |   J J 2   0.01 0.03 0.03 

Results in table 3 shows that our proposed approach 
introduced quite better results than other methods, 
particularly when almost data were censored (c = -92;  
-94dBm). This can be clarified as follows: Proposed method 
applied not only the upgraded EM algorithm but also 
extended SWRLCF, in which both observed data and 
unobserved data are contributed to the estimates (see in 
equations (9)-(11),(14)). On the other hand, in the penalty 
functions of AIC[2], BIC[9] and SWRLCF [10], there is almost 
no practical contribution of unobserved data while they 
really contributed to the SWRLCF in our approach, see in 
equation (10), (11), (14). 

4. CONCLUSION 
In this paper, the authors introduced the novel 

methods to take the censoring problem presented in 
collected data into consideration. Simulation results using 
generated data showed that our upgraded EM algorithm 
allows to estimate the parameters of GMMs more 
accurately than existing methods, especially when 
collected data were suffered from censoring problem. By 
applying our proposal, errors of estimated parameters 
have been reduced. Moreover, by utilizing the extended 
SWRLCF, both the number of components and 
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parameters of GMMs are estimated accurately. This leads 
the fact that the performance in modelling the 
distribution of data set is better. In future works, the 
proposed EM and model selection algorithm will be 
applied to WiFi RSSI based indoor positioning systems so 
as to recduce the positioning errors and the calculating 
time. 
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