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ABSTRACT 
This paper presents a novel adaptive controller for two-wheeled self-

balancing mobile robots combining sliding mode control and hierarchical sliding 
control techniques. In addition, the radial basis function neural networks 
(RBFNN) are also applied to approximate the uncertain components in the 
system. The stability of the closed-loop control system is proven based on the 
Lyapunov principle. The simulation results show that the proposed controller's 
response quality is excellent even if the system is affected by unexpected 
external disturbances. 

Keywords: Two-wheeled self-balancing mobile robot, Sliding mode control, 
Hierarchical sliding control, Radial basis function neural network. 

TÓM TẮT 
Bài báo này trình bày về một bộ điều khiển thích nghi mới cho robot hai 

bánh tự cân bằng bằng việc kết hợp những kỹ thuật điều khiển trượt và điều 
khiển trượt tầng. Bên cạnh đó, mạng nơ ron RBF cũng được sử dụng để xấp xỉ các 
thành phận phi tuyến trong hệ thống. Tính ổn định của hệ thống điều khiển 
vòng kín được chứng minh dựa theo nguyên lý Lyapunov. Những kết quả mô 
phỏng cho thấy chất lượng đáp ứng của bộ điều khiển đề xuất là rất tốt ngay cả 
khi hệ thống chịu ảnh hưởng bởi nhiễu ngoài không biết trước. 

Từ khóa: Xe hai bánh tự cân bằng, điều khiển trượt, điều khiển trượt tầng, 
mạng nơ ron RBF. 
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1. INTRODUCTION 
A two-wheeled self-balancing mobile robot (TWSBMR) 

or two-wheeled inverted pendulum robot is a naturally 

unstable system that comprises a two-wheel chassis and an 
inverted pendulum body. Despite the inverted pendulum 
structure of the TWSBMR causing postural instability, it 
provides many benefits for driving efficiency. In contrast to 
a three-wheeler or a four-wheeler, it can pass through 
narrow spaces and allows the driver to maintain an upright 
posture on inclined terrains and steer on the spot. As a 
result, TWSBMR is widely used in practical applications, 
such as unmanned navigation vehicles [1-3], personal 
transporters [4, 5], wheeled humanoids [6], and robot 
wheelchairs for the disabled [7, 8]. 

The TWSBMR is characterized by highly nonlinear and 
inherently unstable dynamics and is classified as an 
underactuated system [9]. With just two actuator inputs of 
both wheels, it implements three movements: pitch, yaw, 
and forward. Therefore, controlling a robot to move as 
desired while maintaining upright posture is a 
challenging topic that has drawn the attention of 
researchers around the world [9]. Similar to other 
underactuated systems, control methods for TWSBMR are 
diverse, ranging from simple linear control techniques to 
complex nonlinear control techniques. Several studies 
based on linear control techniques for TWSBMR have 
been reported in the literature, such as PID control [10-
12], pole placement [13, 14], and linear quadratic 
regulator (LQR) [15, 16]. However, linear control 
approaches cannot maintain postural stability as soon as 
the TWSBMR enters a zone of nonlinear behavior with 
large pitch angles due to intentional maneuvers or 
external disturbances [17]. Many nonlinear control 
methods have been developed to address this issue, such 
as feedback linearization [18, 19], model predictive 
control (MPC) [20, 21], and sliding mode control (SMC) 
[22-24], fuzzy control [25-29], neuro-adaptive control [30-
33]. Consequently, nonlinear control approaches remain 
favored and more efficient for TWSBMR control.  
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Among the nonlinear control methods, the SMC 
scheme is an excellent candidate for controlling 
underactuated, nonlinear systems. SMC is designed in two 
steps. First, design an appropriate sliding surface that 
determines the system's behavior during sliding. 
Subsequently, a control action is designed to lead all state 
trajectories to the sliding surface in finite-time and then 
force them to remain there. Once trajectories are 
established on the sliding surface, the system becomes 
insensitive to modeling errors and external disturbances. 
There have been some other variations based on the SMC 
scheme to design a controller for TWSBMR, such as 
discrete-time SMC [34, 35], higher-order SMC [36]. For 
instance, H. Aithal and S. Janardhanan [36] have proposed a 
second-order SMC method for trajectory tracking of a two-
wheeled mobile robot. Although this approach has the 
advantage of eliminating chattering, it is computationally 
heavy compared to conventional SMC and requires prior 
knowledge of system parameters. 

In this paper, we present a novel control method for 
TWSBMR, named adaptive hierarchical sliding mode 
control (AHSMC), combining SMC, hierarchical SMC (HSMC) 
and radial basis function neural networks (RBFNN). The 
HSMC technique is used in this study since it is well suited 
to underactuated systems and is also highly sustainable 
[37]. First, the controller is designed based on SMC and 
HSMC techniques,  abbreviated as HSMC, to stabilize the 
system states on the sliding surface. The RBF neural 
network is then employed to approximate TWSBMR's 
uncertainty components. The RBF network is used here 
because it can approximate any nonlinear function with 
arbitrary precision when hidden layer nodes are large 
enough [38]. Moreover, it has a simple structure with only 
one input layer, one hidden layer and one output layer, and 
it is very suitable for real-time applications. As a result, the 
proposed controller is robust against parametric 
uncertainties and external disturbances, allowing fast 
convergence and high tracking accuracy.  

The remainder of the paper is organized as follows: 
Section 2 presents the dynamic model of the system, while 
the control design steps are introduced in Section 3; 
Section 4 provides simulation results, and some concluding 
remarks are drawn in Section V. 

2. DYNAMIC MODEL  
It is necessary to build a dynamic model of the system 

before designing the controller for TWSBMR. A reliable 
dynamic model is a prerequisite for any model-based 
control design. This study uses the TWSBMR mathematical 
model as detailed in [39], which is built from the Euler-
Lagrange equation.  

The TWSBMR comprises three rigid bodies, two wheels 
on either side and an inverted pendulum, as shown in Fig. 
1. In the fixed coordinate system {N}, x denotes the robot's 
displacement in straight motions, ψ denotes the robot's 
rotation angle in yaw motions, and θ denotes the body's tilt 

angle in pitch motions. Hence, TWSBMR's motion is 

characterized by the state vector  
Tq x θ ψ .   

 
Figure 1. Schematic of the two-wheeled self-balancing mobile robot 

The relationship between a wheel's torque and the 
current flowing through it is described as follows 

L m L

R m R

T K i
T K i





                                                                                   (1) 

where TL, TR, iL, iR is the torque, the electric current of the 
left and right wheel, respectively. 

With model parameters as listed in Table 1, TWSBMR's 
equation of motion is as follows   

 Mq C D q G Bτ                                                                (2) 

where , ,M C D   ℝ��� is the inertia matrix, centrifugal 
and Coriolis force matrix, damping matrix, respectively. 
G ℝ��� is the gravity matrix, B   ℝ��� is the input 

transformation matrix, and  
T

L Rτ i i  is the input matrix. 
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The elements of the matrices M, C, D are as follows 

11 B W 2

2J
m = m + 2m +

r
, 12 21 Bm m m lcosθ  , 2

22 2 Bm I m l   
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Table 1. Model parameters of TWSBMR 

Symbol Definition 

d Distance between the two wheels 

l Length of pendulum 

r Radius of wheels 

mB Mass of the pendulum body (except wheels) 

mW Mass of each wheel 

J, K Mass moment of inertia (MOI) of each wheel w.r.t. the 
wheel axis and the vertical axis. 

I1, I2, I3 MOI of the pendulum body w.r.t.  

From (2), it is deduced that 
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3.  CONTROLLER DESIGN 
Let us define  

 
TT

1 2 3 4 5 6x x x x x x x x x θ θ ψ ψ    
   

Two virtual control signals are defined as follows 
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                                                                                  (4) 

Then, Eq. (3) is rewritten as follows 
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                                                                           (5)                                 

Definition of tracking errors  

;1 1 d d 2 1e x x x x e e       

;3 4 d d 4 3e x θ θ θ e e       

;5 5 d d 6 5e x ψ ψ ψ e e       

Where xd, θd, ψd are the reference values  of x, θ and ψ, 
respectively.  

Hence, Eq. (5) is rewritten in error form as follows 
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                                                                 (6) 

3.1. Hierarchical sliding mode controller design 
This section applies the hierarchical sliding mode 

control strategy [37] to design a controller that stabilizes 
forward and pitch movements. 

Step 1: Considerring the first subsystem in (6) 

1 2

2 1 1 11 d

e e

e f g u x




  



 
                                                           (7)   

where u11 is the virtual control signal to ensure this 
subsystem is stable, i.e. 1t

lime 0


  

The first-level sliding surface for first subsystem is 
defined as 

1 1 1 2s c e e                                                                                 (8) 

where c1 is arbitrary positive constant. 

The control law for (7) consists of two components, the 
equivalent control law and switching control law, which are 
designed as follows: 

w11 11eq 11su u u                                                                          (9) 
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where k1, η1 are arbitrary positive constants. 

Differentiating s1 with respect to time yields 

 
   

 

1 1 2 1 1 11eq 11sw d

1 2 1 1 11eq 1 11sw d
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s c e f g u u x
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Considering the following Lyapunov function as follows: 

2
1 1

1
V s

2
  

Differentiating V1 with respect to time yields 

 s2
1 1 1 1 1 1 1 1V s s k s s sign 0       

Thus, s1 is stable according to the Lyapunov criterion, 
i.e. 1t

lims 0


 . According to the definition of the sliding 

surface, the state error 1t
lime 0


 . 

Step 2: Considerring the second subsystem in (6): 

3 4

4 2 2 12 d

e e

e f g u




  




                                                               (11) 

The first-level sliding surface for second subsystem is 
defined as: 

2 2 3 4s c e e                                                                             (12) 

where c2 is arbitrary positive constant. 

The control law for (11) consists of two components, the 
equivalent control law and switching control law, which are 
designed as follows: 

12 12eq 12swu u u                                                                        (13) 
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                                                                     (14) 

Step 3: Considerring first and second subsystem in (6) 
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The second-level sliding surface for two subsystems is 
defined as: 

   1 1 1 2 1 2 1 2 1 2 3 4S λ s β s λ c e e β c e e                      (16) 

where λ1, β1 are arbitrary positive constants. 

Differentiating S with respect to time yields 

   

   
1 1 1 2 1 2 1 2 1 2 3 4
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S λ s β s λ c e e β c e e

λ c e β c e λ f g u x β f g u θ

     

       

      


 (17) 

Let us consider the following Lyapunov function as: 

21
V S

2
                                                                                    (18) 

Differentiating both sides of (18) with respect to time 
yields  

*V S S                                                                                     (19) 

where k2, η2 are arbitrary positive constants. 

The common control signal (u1) for the first and second 
subsystem in (33) is defined as: 

1 11eq 11sw 12eq 12swu u u u u                                                 (20) 

Substituting (28), (29) and (34) into (33) and simplifying 
yields 
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The control signals ,11sw 12swu u  are designed so that 
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12sw 11sw

1 1 1 2

2 2 1 d 1 d

1 1 1 2

λ g u β g u
u u

λ g β g

k S η sign S λ x β θ

λ g β g


  



  





               (22) 

Then, 

 * 2
2 2V S S k S S 0                                            (23) 

Substituting (10), (14) and (22) into (20), we derive the 
control signal for the first two subsystems in (33) as follows:                   
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                              (24) 

3.2. Sliding mode controller design 
Considerring the 3rd subsystem in (6): 

 5 6

6 3 3 2

e e

e f g u




 




                                                                        (25) 

The sliding surface for this subsystem is defined as:  

3 6 3 5s e c e                                                                        (26) 

where c3 is a arbitrary positive constant.  

Taking the derivative of s3 with respect to time yields  

3 3 3 2 d 3 6s f g u c e                                    (27) 

Using a Lyapunov candidate function as follows: 

2
3 3

1
V s

2
                                                                                     (28) 

Differentiating both sides of (28) with respect to time 
yields  

 3 3 3 3 3 3 2 d 3 6V s s s f g u ψ c e       

The control signal for (25) is defined as: 

  1
2 3 3 d 3 6 3 3 3 3u g f ψ c e k sign s η s                      (29) 
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where k3, η3 are arbitrary positive constants.  

Then 2
3 3 3 3 3V k s s 0    . 

Thus, s3 is stable according to the Lyapunov criterion, 
i.e. 3t

lims 0


  and  5t
lime 0


  

For reducing chattering at high frequencies, the sign(.) 
function in (24), (29) is replaced by a sat(.) function defined 
as follows:  

 
  ,  

,            

sign x x 1
sat x

x x 1

 
 


                                                    (30) 

By substituting the virtual control signals u1, u2 provided 
in (24), (29) into (4), we determine the corresponding 
current signals for the TWSBMR's wheel motors. 

3.3. Adaptive rule design 
Considering the dynamic model of TWSBMR in (27): the 

matrices C, D, G contain uncertain components that are 
difficult to determine in practice. Additionally, the functions 
f1, f2, f3 in (32) contain the elements of these matrices. 
Therefore, SMC and HSMC controllers designed in the 
previous section are unlikely to achieve high accuracy in 
actual TWSBMR control. As a result, to increase the 
robustness of HSMC and SMC controllers with model 
uncertainty and the effects of unknown external 
disturbances, this section proposes an AHSMC controller 
using RBF neural network (RBFNN) [38] for adaptively 
estimation the functions f1, f2, f3. 

 
Figure 2. Proposed TWSBMR control structure diagram 

 
Figure 3. RBF neural network structure for approximating functions f1, f2, f3 

Fig. 2 shows the proposed TWSBMR control structure 
diagram, in which the three networks RBF1, RBF2 and RBF3 
are RBFNNs used to approximate functions f1, f2, f3 
respectively. These networks have the same structure, as 
depicted in Fig. 3. The RBFNN's inputs include a position 

vector  
Tq x θ ψ  and a velocity vector 

T
q x θ ψ   

   .  

The output of the RBF1, RBF2 and RBF3 networks 

denoted ˆ ˆ ˆ, ,1 2 3f f f , are approximations of f1, f2, f3, respectively. 
The RBFNN's hidden layer includes l nodes 

 
T

1 2 lh h h h  , defined as follows: 

1i 1i 2i 2i

2
i

i

l 1j 1j 2j 2j

2
j 1 j

q c ,q c q c ,q c
exp

b
h , i 1,2, ,l.

q c ,q c q c ,q c
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b

     
 
 
   
     
  
 
 



 

 
  (31) 

where .,.   is the scalar product operator defined in 

normed space 〈ℝ�, ‖. ‖〉. 

It is noted that with sufficient nodes in the hidden layer 
(l), an RBF neural network can approximate any nonlinear 
function with arbitrary precision.  

As a result, the RBF1, BRF2 and RBF3's outputs are 
presented as follows: 

  

T
1 1 1

T
2 2 2

T
3 3 3

f W h

f W h

f W h

   


  


  

                                                                     (32) 

where ε1, ε2, ε3 are minor errors, 

 
T

i i1 i2 ilW w w w   with i = 1, 2, 3 is the ideal 

weights vector between the hidden and the output layer. 

Let ˆ ˆ ˆ, ,1 2 3W W W  denote estimations of 1 2 3, ,W W W  
respectively. 
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                                                                                (33) 

The estimation errors for 1 2 3, ,W W W  are determined as: 

ˆ

ˆ

ˆ

1 1 1

2 2 2

3 3 3

W W W

W W W

W W W

  


 


 







                                                                     (34) 

The control signals in (47) and (50) are rewritten as 
follows: 

 
 ˆ ˆ

ˆ 2 2 1 d 1 d1 1 1 2 1 1 2 1 2 4
1

1 1 1 2 1 1 1 2

k S η sat S λ x β θλ f β f λ c e β c e
u

λ g β g λ g β g

    
 

 


 (35) 
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  ˆˆ 1
2 3 3 d 3 6 3 3 3 3u g f ψ c e k sat s η s                        (36) 

Theorem: An updated law for neural network's weight 
matrices are selected as follows: 

 

 

 

ˆ ˆ

ˆ ˆ

ˆ ˆ

1 1 1 1 1

2 2 2 1 2

3 3 3 3 3

W W F λ Sh α S W

W W F β Sh α S W

W W F sh α s W

    



   

    


 

 

 

                                      (37) 

where F1, F2, F3 and α, σ are preselected positive 
constants.  

If the following conditions are satisfied 
2 2

1 2N1 F F

2 2

2
3N2 F

3
3 3

W Wε
S α

k 4k

Wε
s σ

η 4η

 
  




 


                                                 (38) 

where N1 1 1 1 2ε λ ε β ε  , N2 3ε ε  then the closed-

loop system will be stable according to Lyapunov criterion. 

Proof: 
Considerring the Lyapunov function in quadratic form 

as follows: 

   2 T 1 T 1
1 1 1 2 2 2

1 1 1
V S tr W F W tr W F W

2 2 2
               (39) 

Here, the matrix trace operator tr(X) is defined as  
the sum of all the elements along the main diagonal of 
matrix X. 

Taking the derivative of both sides of (39) with respect 
to time yields 

   T 1 T 1
1 1 1 2 2 2V SS tr W F W tr W F W   

                                    (40) 

Using the estimated control signal ˆ1u  from RBFNN, Eq. 
(21) is rewritten as follows: 

  ˆ1 1 2 1 2 4 1 1 1 2 1 1 1 2 1 1 d 1 dS λ c e β c e λ f β f λ g β g u λ x β θ           (41) 

Substituting (32), (33), (34) and (35) into (41), one can 
find out that: 

   T T
2 2 1 1 1 2 1 1 1 2S η sat S k S λ W h β W h λ ε β ε            (42) 

From this it can be deduced that: 
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T 1 T 1
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T T
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T 1 T 1
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V
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  (43) 

Substituting (37) into (43), we obtain: 

    

      
2 2 1 1 1 2

T T
1 1 1 2 2 2

S η sat S k S S λ ε β ε
V

α S tr W W W tr W W W

    
 
    
 


   

  

(44) 

Next, we consider the following Lyapunov function 

 2 T 1
3 3 3 3 3

1 1
V s tr W F W

2 2
                                                        (45) 

Taking the time derivative of  V3 gives 

 T 1
3 3 3 3 3 3V s s tr W F W 

                                  (46) 

Eq. (27) gives us: 

   ˆ T 1
3 3 3 2 3 d 3 6 3 3 3V s g u f ψ c e tr W F W    

                   (47) 

Substituting (36) into (47) results in: 

      
      

   
    

ˆ

ˆ
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3 3 3 3 3 3 3 3 3 3 3 3

T T T 1
3 3 3 3 3 3 3 3 3 3 3 3
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  (48) 

Substituting (37) into (48) gives 

    2 T
3 3 3 3 3 3 3 3 3 3 3 3V s k sat s η s s ε σ s tr W W W          (49) 

Notice that  
2T

3 3 3 F
tr W W W    .  

Using the Cauchy-Schwart inequality, we have 

   , , ,
2T

i i i i i iF F F
tr W W W W W W i 1 2 3        

It can be deduced from (44), (49) that  
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Thus, if condition (38) is satisfied, one can deduce that: 
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This means that all subsystems in (5) are asymptotically 
stable at the origin by Lyapunov's criteria. The theorem has 
been proved. 

4. SIMULATION RESULTS 
To verify the effectiveness of the AFHSMC controller, we 

conducted some simulations using Matlab software. As a 
comparison of both controllers, simulations were also 
performed with the HSMC controller. 

For the simulations, the TWSBMR system parameters are 
assumed to be known as  

mb = 116(kg), J = 16.25(kg.m2), r = 0.1(m), l = 0.23(m),  
I1 = 0.26(kg.m2), d = 0.19(m), mw = 11.4(kg), I2 = 0.165 
(kg.m2), I3 = 0.2(kg.m2), by = 5(Ns.m), brx = 3.68 (Ns.m),  
g = 10(m/s2), α = 56o 

In addition, the controller parameters are determined 
empirically, i.e., error and trial, to achieve the best possible 
control quality.  

λ1 = 3, β1 = 0.1, c1 = 5, c2 = 0.01, k2 = 0.01, η2 = 10, λ = 12, 
k3 = 3, η3 = 2, l = 15, F1 = F2 = 5, F3 = 20, α = 0.1, σ = 0.65 

We verified the system's responses using the following 
reference values: xd = 1(m), θd = 0(degree),  
ψd = (180/π)x0.1sin(2πt) (degree) 

We invested two experiments in a simulated 
environment with/without the effect of unknown external 
disturbances. 

 
(a) Straight motion 

 
(b) Pitch motion 

 
(c) Yaw motion 

Figure 4. Simulation results without unknown external disturbance 

Figure 4 shows the system's responses in the absence of 
external disturbances. For both AFHSMC and HSMC 
controllers, all responses rapidly approached and stabilized 
at their reference values. These results show that AFHSMC's 
control quality is better than HSMC's, especially with regard 
to pitch and yaw motions.  

Figure 5 shows that AFHSMC outperforms HSMC under 
external disturbances. In the case of TWSBMR systems 
equipped with the HSMC controller, all system outputs are 
knocked out of steady equilibrium as soon as external noise 
appears. Meanwhile, with the AFHSMC controller, all 
system outputs are almost unaffected by external noises. 
These results are because the AFHSMC controller has 
strong adaptability to the model uncertainty and the 
effects of unknown external disturbances with the 
proposed adaptive law. 

 
(a) Straight motion 

 
(b) Pitch motion 
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(c) Yaw motion 

Figure 5. Simulation results with unknown external disturbance 

Thus, the simulation results demonstrate that the 
proposed controller can accurately control the position and 
orientation of the TWSBMR while maintaining a minimal 
pitch angle. Furthermore, the proposed controller is robust 
against external noise as the TWSBMR moves.  

5. CONCLUSION 
This paper has proposed an adaptive controller for 

TWSBMR combining SMC, hierarchical SMC (HSMC) and RBF 
neural network. The controller SMC-HSMC acts as the 
central controller to ensure the stable system's state on the 
sliding surface. An adaptive rule is designed to 
approximate the uncertain components in the system. 
Consequently, the proposed controller is robust in actual 
TWSBMR control under uncertain model parameters or 
unexpected external disturbances. The simulation results 
show that the system responses quickly converge to their 
reference and are little affected by unknown external 
disturbances. The stability of the proposed control system 
is also rigorously proven according to Lyapunov's principle. 
In the subsequent studies, we will test the proposed 
algorithm for actual TWSBMR and verify the effectiveness of 
the proposed controller with many real-life scenarios. 
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