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MULTI-RESPONSE OPTIMIZATION OF EDD PROCESS
OF DIE STEEL FOR IMPROVING PRODUCTION RATE

AND HOLE QUALITY

TOI WU HOA DA MUC TIEU QUA TRINH KHOAN XUNG CHO VAT LIEU LAM KHUON

DE NANG CAO NANG SUAT VA CHAT LUONG LO GIA CONG

ABSTRACT

Improving the technical outputs of the electrical discharge drilling (EDD) process is an effective
solution to decrease manufacturing costs. This paper presented a multi-response optimization to
simultaneously improve the material removal rate (MRR) and decrease the dilation of hole (DH).
The processing conditions considered include the pulse on time (TON), the current (AMP), the gap
voltage adjustor (GAP), and the pulse off time (TOFF). An EDD drilling machine was adopted in
conjunction with the Box-Behnken matrix to conduct experimental trails for machining of SKD61
steel. The highly nonlinear relationships between the process parameters and criteria outputs were
developed using the Kriging models. Finally, an archive-based micro-genetic algorithm (AMGA)
was used to determine the optimal values of the processing factors. The results showed that DH
could be approximately decreased 12.26%, while (MRR) is around improved 32.17%. The
combination of the Kriging model and AMGA could be considered as an intelligent approach for
modeling EDD processes and generating reliable optimal results.

Keywords: EDD, dilation of hole, material removal rate, Kriging model, mold steel.

TOM TAT

Nang cao cac chi tiéu ki thuat clia qua trinh khoan xung la mot giai phap hiéu qua dé giam chi
phi san xuat. Nghién cfu nay dé cap dén bai todn tdi bu héa da muc tiéu dé nang cao tdc do béc
téch vat liéu va giam do ma rong cha 16. Céc thang s6 cong nghé bao gom curdng d dong dién, do
kéo dai xung, khoang cach xung va hé sd diéu chinh dién &p. Qua trinh thyc nghiém duoc tién hanh
trén may khoan xung EDD theo ma tran quy hoach Box-Behnken. MGi quan hé phi tuyén tinh gira
cac thong s6 cong nghé va ham muc tiéu duoc xay dyng théng qua md hinh Kriging. Cudi cting, mot
thuat toan di truyén vi mo dua trén kho leu trir (AMGA) da dwoc stk dung dé gidi quyét mdi trong
quan gitra cAc y&u t6 dAu ra xéc dinh cc thong s t6i tru. KEt qua cho thay, do md rong cdia 16 6 thé
giam khoang 12,26%, trong khi toc do boc tach vat liéu dugc cai thién khoang 32,17%. Su két hop
gitra md hinh Kriging va AMGA ¢4 thé duroc coi la mdt céch tiép can thong minh d& mo hinh hda céc
quy trinh khoan xung va tao ra két qua tdi tu dang tin cay.

Tlr khoa: Khoan xung, d0 gian nd cdia 16, toc do béc tach vat liéu, mo hinh Kriging, thép 1am
khudn.
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1. INTRODUCTION

Electrical discharge machining (EDM) is
an efficient machining method, in which the
removal of the material is performed based
on melting and evaporation processes. The
conversion of electrical energy to thermal
energy is conducted by electrical sparks
between the electrode and the workpice in
the dielectric liquid [1]. The electrical
discharge drilling (EDD) process has the
same working principle as EDM process. The
EDD process is specifically designed to
quickly drill the holes in the production of
turbine blades, fuel injectors, coolant lines,
and plastic molds [2].

The effects of machining conditions on
the criteria outputs of the EDD processes
have been explored by many researchers.
Yilmaz et al. [3] investigated the drillability of
Hadfield steel for the EDD operation of the
deep-holes. The effect of input values for
deep-hole drilling of Inconel 718 was
examined by Kuppan et al. [4]. Asokan et al.
[5] analyzed the impacts of process
parameters on performance characteristics
in EDD process the titanium alloy. Mohan et
al. [6, 7] investigated the machinability for
EDD process of AISiC metal matrix
composite. Lee et al. [8] proposed the
estimating model for the electrode wear in
the EDM drilling. The optimization of
parameters was performed to improve the
technical outputs for EDD process of Ti-
6Al04V [9] and PCDS [10]. As a result, the
factors optimized are the process
parameters (the pulse on time, the pulse off
time, the current, and the voltage), the
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electrode characteristics (the geometry and the material),
dielectric properties (type, dielectric strength, and
viscosity), and the workpiece properties. The technological
responses considered are surface roughness properties and
the hole quality.

In the current work, a multiple-response optimization of
process parameters for the EDD process of the die material
has performed to improve the MRR and reduce the DH. The
inputs may have complicated impacts on the outputs and an
effective approach for modeling EDD process behavior and
the optimizing processing factors in terms of improving
working performances still is a significant contribution.

2. MATERIALS AND METHODS
2.1. Optimization framework

The procedure for generating optimal values is shown
in Fig. 1. The experimental matrix generated by the Box-
Behnken method is applied to save the experimental costs
[11, 12]. Process parameters, including the AMP, TON, TOFF
and GAP as well as three levels (-1; 0; +1) were shown in
Table 1. The chemical compositions of SKD61 material are
shown in Table 2. The parameter ranges are chosen based
on the machine tool's characteristics, the
recommendations of the electrode’s manufacturer, and
material properties. The predictive models of DH and MRR
are then developed with respect to process parameters
using the experimental data.

In this paper, the AMGA is applied to find a set of
feasible solutions, which can be used to enhance surface
integrity. AMGA is an evolutionary optimizing technique, in
which each response is resolved individually and a set of
feasible solutions is observed. The operating mutation and
solution are performed by means of the chosen designs.
The search history and solution selection are conducted
using a myriad of different heuristics. The best values of the
responses were determined at the end of the convergent
run. Many researchers indicated that AMGA possesses high
computational efficiency and provides the globally optimal
solutions, as compared to other optimization algorithms
[13, 14].

Identify parameters
& their ranges

EDM drilling machine,
electrode & workpiece

e
)

’ Experimental data collection ‘

Machining
experiments

Changing model or i ing I
number of experiments ’ Calculating DH and MRR l

!

‘ Development of Kriging models ‘ No

Satisfy with
optimal results?

Generating feasible solutions using AMGA

Figure 1. Systematic optimization procedure

Table 1. Process parameters and their levels

Symbol Parameters level-1 | level0 | level+1
AMP Current (A) 2 5 8
TON Pulse on time (us) 40 20 140
GAP Gap voltage adjustor 2 5 8
TOFF Pulse off time (us) 15 65 115

Table 2. Chemical compositions of SKD61

C Si Mn P S Cr | Mo Cu v
038 | 09 028 | 003 | 002 | 49 | 12 | 026 | 095

2.2. Experiments and measurements

The CNC EDM machine, namely MAX S.E.E S36 is used to
perform the experimental runs as depicted in Fig. 2. The
brass electrode of 1 mm diameter and 400 mm length is
used as tool material. The vertical axis movement of the
electrode is controlled using the servo motor and the
desired depth of 10 mm is set for each run. The debris is
removed with the aid of the fluid.

The holes are drilled on the workpiece having the
dimensions of 20 x 10 x 100 mm. All faces of the specimens
are ground and polished before the EDM drillings. The
workpiece having the mating interface is used to measure
the length of the drilling hole.

The DH is an indicator of the machined part quality. The
diameter of each hole is measured at different positions
and the average value (AD) is calculated to find the mean
diameter of the hole at the top as well as the bottom. The
value of DH is estimated using the following equation, as
depicted in Fig. 2

DH=AD-D, L

where D, is the original diameter of the electrode. AD is the
circularity of drilled hole and calculated using Eq. (2):
_D,+D, +....+D, @)
- n
where n is the number of measuring points.

The machined holes are dried, cleansed, scanned using
a 3D high-resolution scanner, namely 450V. The captured
images are used to the diameters and the length of each
hole.

Generally, the MRR is generally considered as an

important indicator of the production rate. The MRR
(mm?¥/s) is calculated using the following equation:

Vg - Va _ DAL _ TI(ADp + ADporom)°L (3)
t 4t 16t

where D, (mm), L (mm), and t (s) are the average diameter
of the hole, the length of the hole, and machining time,
respectively. AD,,, and ADpy,, are the top and bottom
circularity of each hole, respectively.

AD
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2.3. Kriging Model

The Kriging models of DH and MRR in terms of
processing factors are proposed using the experimental
data. It can be described by means of equation 4:

y(x) =p(x)+2(x) 4)
where y(x) denotes the polynomial function to be
developed, p(x) presents a known polynomial function and

z(x) is the realization of a normally distributed stochastic
process [15].

The Kriging predictor at a specific value of x is
calculated by:

y(x) =B+1" (OR*(f -pP) ©)
where f denotes the column vector containing the sample

data and p presents the filled column vector. The factor [3 is
calculated using the following equation:

B=(PR*p)'PRY ©)
r'(x) is the correlation vector and estimated by:
r'(X)=[R(X,X"),R(X,X?),....R(,x")]’ ()

In this paper, the Gaussian correlative function is used
and defined as:

R(8)=expl-3:6, (X, ~x.)] (®)

The estimated variance of the proposed model is
calculated by:

52 _(y=PBR“(y-pB) ©)
N
The correlation factor 8, is estimated by:
~2 (10)
maxtD(ek)=—[N|n(02+ln|R|]

~2
where ¢ and |R| are the function of 8,

Figure 2. Experiments
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3. RESULTS AND DISCUSSION
3.1. Development of Kriging models

The DOE matrix and experimental results of the EDD
process are given in Table 3. For constructing a Kriging
surrogate, it is necessary to obtain the unknown correlation
parameter 6, and scalar factor B in Egs. 6 & 10. The
correlation parameter 8, and scalar factor 3 were observed
using the maximum likelihood method, as shown in Table 4.

Table 3. Experimental results

No. | AMP TON TOFF GAP DH MRR
A | () | (us) (mm) | (mms)
1 5 90 65 5 0.601 0.5400
2 2 90 65 2 0.392 0.4651
3 5 90 15 2 0.513 0.3515
4 5 90 65 5 0.604 0.5588
5 5 90 115 8 0.599 0.8867
6 5 90 115 2 0.346 0.2005
7 5 140 65 8 0.824 1.5965
8 2 90 15 5 0.611 0.3046
9 5 40 115 5 0.352 0.1806
10 8 90 115 5 0.674 0.9454
11 5 40 65 2 0.291 0.1688
12 5 90 65 5 0.603 0.5478
13 2 90 65 8 0.726 0.5319
14 8 90 65 8 0.986 2.6267
15 2 40 65 5 0.322 0.1289
16 8 140 65 5 0.891 1.5989
17 5 90 15 8 0.848 1.4265
18 2 90 115 5 0.321 0.1198
19 8 90 15 5 0.925 1.3470
20 5 40 65 8 0.691 0.7566
21 8 90 65 2 0.776 0.7113
22 5 140 115 5 0.479 0.4506
23 2 140 65 5 0.574 0.3242
24 5 140 15 5 0.802 0.8073
25 5 90 65 5 0.608 0.5531
26 8 40 65 5 0.664 0.8438
27 5 40 15 5 0.461 0.3541
28 5 140 65 2 0.601 0.3982
29 5 90 65 5 0.607 0.5393
Table 4. The parameters of the Kriging models
Responses Correlation parameter 6, Scalar
AMP | GAP ToN | ToFF | factorP
DH 0.124259 | 0.118648 | 0.105811 | 0.121930 | 0.014445
MRR 0.217231 | 0.204221 | 0.071491 | 0.060502 | 0.127774
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1.0 4

R2=0.9886 evaporation. A higher pulse off time decreases the
4 discharge energy, leading to a slower MRR.
w4 The contributions of inputs are depicted using Pareto
- charts, as shown in Fig. 5. The blue bar shows that the
061 . A process parameters have a positive effect on the objective,
§ = while the red denotes a negative influence. As a result, the
B percentage contributions of AMP, GAP, TOFF, and TON are
(2 2 17.90%, 16.44%, 14.15%, and 13.89%, respectively. The AMP
0.2 - 2 account for the highest percentage contribution with
r respect to quadratic terms (7.20%); this followed by TOFF?
004 (4.90%), TON? (4.63%), and GAP? (3.70%). The contributions
. . . . . . . . ; of the interaction terms, including GAP-TON and GAP-TOFF
0.0 02 04 0.6 08 10 are 4.60% and 2.13%, respectively, which have a negative
Actual effect on the dilation of hole.
(2) For the dilation of hole As shown in Fig. 5b, the AMP has the largest effect on
R’=0.9874 MRR with a percentage of 14.92%, followed by GAP
201 ; (11.95%), TON (9.20%), and TOFF (7.47%). The GAP? is the
most affected factor due to the highest contribution
15 - S (9.28%) with regard to the quadratic term, followed by
P AMP? (8.51%).
g s
© 1.0
o
o 05 7 0.3720
' 4l 0.4435
- 0.5150
0.0 1
0.5865
0.0 05 1.0 15 20 06530
Actual 0.7295
(b) For the material removal rate 0.5010
Figure 3. Investigations of the model accuracy for the Kriging models HfEs
3.2. Model fitness 09440
The adequacy of the Kriging models can be evaluated
using the R%-values. The R*-values of DH and MRR are 0.9886
and 0.9874, respectively. Additionally, the observed data
distributed on the straight lines, as exhibited in Fig. 3. It can
be stated that there is a good agreement between
predicted and measured values. Therefore, the fidelity of
the Kriging models proposed for the machining responses
is acceptable. 0.09800
3.3. The effects of process parameters on the technical 0.1675
responses 0.2370
The effects of processing factors on the DH are shown in 0:2065
Figs. 4a and b. At a higher value of AMP, GAP, and TON, the 0:5160
discharge energy will increase, leading to excessive 0.4455
material removal, which results in larger dimensions. In 0.5150

0.5845
0.6540

contrast, the decreased DH is associated with an increased
TOFF. The longer the TOFF, the smaller discharge energy
becomes, which decreases the evaporating of materials,
leading to smaller diameters.

The effects of processing factors on the material
removal rate are shown in Figs. 4 ¢ and d. An increase in the
AMP, GAP, and TON causes higher discharge energy, which
leads to an increment in the rate of melting and (b) DH versus TON and TOFF
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0.06000
0.3050
0.5500
0.7950
1.040
1.285
1.530
1.775
2.020

0.5850
0.7544
0.9237
1.093
1.263
1.432
1.601
1011
1.940

(d) MRR versus TON and TOFF
Figure 4. Interaction effects of each machining parameters on the objectives
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GAP

TOFF-TON
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TONA2
GAP-TON
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g 10 12 14 16 18 20
% effect on DH
(a) Pareto chart for DH
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AMP-GAP

AMP

GAP-TOFF

0 2 4 6 8 10 12 14 16 18 20
% effect on MRR

(b) Pareto chart for AMRR
Figure 5. Pareto charts for the objectives
4. OPTIMIZATION RESULTS

The developed models for the DH and MRR are
optimized using AMGA, which has the capacity of finding
the optimal solution of a multi-objective problem. It is
tough work to determine the optimal process parameters
for simultaneous improving machining responses.
Additionally, processing factors have complex effects on
the technical outputs. The optimizing issue can be
described as follows:

Find X = [AMP, TON, TOFF, GAP]
Maximize MRR; Minimize DH

2 < AMP < 8 (A), 40 < TON < 140 (us), 15 < TOFF < 115
(us), 2 <GAP <8.

284

e 8

o

o

¢
f

Optimal point /

)

Material removal rate (mm3/s)

=
=)

04

0 02 04 0.6 0.8 1
Dilation of hole

Figure 6. Pareto fonts generated by AMGA
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Table 5. Optimization results

Method Optimization parameters Responses
AMP | TON | GAP | TOFF DH MRR
A | () (us) | (mm) | (mm’fs)
AMGA 6 139 6 114 | 05273 | 0.7961
Initial 5 90 5 65 0.6010 | 0.5400
Improvement (%), -12.26 .17

The developed equations showing the relationship
between process parameters and machining responses are
used to find optimal parameters by means of the AMGA.
The operating values of AMGA parameters, including the
population size, number of generations, crossover
probability, crossover distribution index, and mutation
distribution index, are 20, 40, 0.9, 10, and 20, respectively.
The Pareto front generated by the AMGA algorithm was
exhibited in Fig. 6, in which the pink points are feasible
solutions. The optimization results are listed in Table 5. The
dilation of the hole is decreased around 12.26% and the
material removal rate is approximately increased 32.17%.

5. CONCLUSION

This paper presented a machining parameters-based
optimization for the electrical discharge drilling of SKD61
material in order to decrease the DH and the MRR. The
Kriging models of two responses were developed in terms
of processing factors, including the TON, the AMP, the GAP,
and the TOFF. An AMGA was used to predict the optimal
values. The conclusions of this research can be listed as
follows:

1. The predictive models for the dilation of the hole and
the material removal rate having R2-values of 0.9886 and
0.9874, respectively indicate a good correlation between
the predicted and experimental values. The models
proposed are effectively exhibited the nonlinear
relationships in terms of process parameters. The predictive
models developed can be used for the electrical discharge
drilling process of SKD61 material to forecast the optimal
process parameters with the acceptable accuracy.

2. The Pareto fronts generated by the AMGA can
significantly support the EDD operators to select
appropriate parameters to decrease the dilation of the hole
and increase the material removal rate. The selection of
optimal parameters can decrease the efforts required and
machining costs as well as machining time.

3. The hybrid approach consisting the Kriging models
and AMGA can widely apply for the optimization of the
electrical discharge drilling process instead of using
practical experience and operating guide. The method
approach in this research is multi-purposeful and can be
used in all cases of electrical discharge drilling processes
with different materials.
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THONG TIN TAC GIA
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